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Description GAME-LIGHTS Data 

Grid cell yearly GAME-LIGHTs Data used in World Development. Unit of analysis 

is the 0.5°x0.5° grid cell-year resolution. This file reports the GAME-LIGHTS data 

physical disaster intensity measures, night light emission data, and population control 

variable used in the regression analysis of the “weather anomalies” paper. The data is 

collapsed to grid cell and year from original events and monthly data. 

Citation 

When using the GAME-LIGHTS data, please cite: 

Felbermayr, G., Gröschl, J., Sanders, M., Schippers, V., Steinwachs, T., The Economic 

Impact of Weather Anomalies, World Development, 2021, forthcoming. 

Primary Data Sources 

This dataset builds on various datasets assembled by primary sources. If you are fully 

convinced you discovered an error and have checked this against the original sources, 

please contact us at groeschl@ifo.de. What follows is a list of sources used to assemble 

the datasets. 

Precipitation. Monthly precipitation data in millimeters stem from the University of 

East Anglia Climatic Research Unit Time-Series [CRU TS 3.23] (Harris et al., 2014). 

The CRU provides homogenized gauge data from weather stations around the world in 

a consistent format. To consider seasonality, we follow the climatological literature (cp., 

Kraus, 1977; Nicholson, 1986) and calculate precipitation anomalies by subtracting the 

long-run (1979-2014) mean precipitation observed in a cell for a given month (i.e., each 

January, February, March) and standardize cell precipitation by dividing it by the corre-

sponding long-run standard deviation for the cell for that particular month:  
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This indicator measures both positive and negative precipitation anomalies expressed in 

standard deviations from the cell mean for a specific month. We aggregate the monthly 

physical intensities to an annual mean intensity indicator. Before aggregating to the an-

nual average precipitation variable, we left-censor the indicator at zero, so only months 

with positive precipitation deviations are considered. As weather anomalies that occur 

earlier in a year have a different impact than events that happen later, we take this dy-

namic relationship into account and calculate a rolling-window weighted annual mean, 

using for each month the number of months remaining in the year as its weight in year t, 

while taking the remainder as the weight for year t+1: 
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𝑚=1 , where i = cell, m = month, t = year, and p = 

weather shock.  
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The resulting measure for precipitation intensity in each year is thus the time-weighted 

average of positive deviations from the long-run monthly mean (both in mm) in a cell, 

expressed in standard deviations from its cell mean. 

Droughts. In addition to global precipitation, the University of East Anglia Climatic 

Research Unit Time-Series [CRU TS 3.23] also provides the information to compute 

the Standardized Precipitation-Evapotranspiration Index (SPEI). This index considers 

the amount of water coming in (precipitation, PRE) and the amount lost (evapotranspi-

ration, PET), resulting in a water balance for each cell in any given month. We follow 

Vicente-Serrano et al. (2010) to construct a cell-specific monthly SPEI that has zero 

mean, a standard deviation of one and is theoretically unbounded. Negative values in 

the SPEI indicate drought events. Hence, to aggregate to an annual average drought 

indicator, we right-censor at zero and take the absolute value to obtain a drought indica-

tor that is standardized across cells. The same rolling-window weighting by months as 

for excessive precipitation is applied to obtain a drought intensity measure for each cell 

and year. 

Cold Spells. To capture anomalous cold spells, we collect gridded 0.5° resolution land 

surface temperatures from the Climate Prediction Center (CPC) of the National Oce-

anic and Atmospheric Administration (NOAA). Analogous to our measure for precipi-

tation anomalies, temperatures are normalized by subtracting the long-run (1979-2014) 

cell mean temperature for a given month and dividing this by the cell’s long-run stand-
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Again, this indicator gives both positive and negative temperature anomalies. To isolate 

the information for cold waves, we right-censor the indicator at zero and express nega-

tive values in absolute terms. The resulting annual cold spell intensity indicator gives us 

the rolling-window weighted average negative deviations of surface temperature from 

the long-run monthly mean at the cell level measured in standard deviations from its 

own mean. 

Storms. To create a measure for storms, we use information on monthly maximum 

sustained wind speeds from two distinct sources: The International Best Track Archive 

for Climate Stewardship (IBTrACS) Version v03r09 provides the geolocation on tropi-

cal cyclone centers with respective pressure and wind speeds. The Global Summary of 

the Day (GSOD) statistics contain wind speeds, also of non-hurricane winds, measured 

at weather stations. To obtain wind speeds at the grid cell level, we fill the gaps by ap-

plying two types of spatial interpolation techniques. We use a wind field model provid-

ed and described in detail by Geiger et al. (2017) to generate continuous gridded wind 

fields around cyclone data from IBTrACS. This model uses available information on 

wind speed, pressure and direction to compute sustained winds speeds that most likely 



occurred in cells surrounding available data points. This provides us with the best possi-

ble wind speed estimates for cells in cyclone paths.  

However, many cells do not experience a cyclone in any given month. To complete our 

panel in any given cell and month, we therefore combine GSOD data with a global 

kriging spatial interpolation algorithm (cp. Krige, 1951). As precision of resulting wind 

speed measures drop with distance to actual weather station measurements, we prefer 

wind field information on hurricanes, cyclones or typhoons – if any such event has af-

fected the cell – to the cell’s kriged station wind speed. The resulting wind speed indica-

tor is the maximum sustained wind speed for a cell-month combination measured in 

knots. Again, our annual measure of wind intensity is constructed by taking the rolling-

window weighted average wind speed in knots. 

Other Data 

Night-Light Emissions. Our raw data stem from the US Air Force Defense Meteoro-

logical Satellite Program (DMSP) and consist of composite satellite images from 

which the annual mean luminosity of each pixel is extracted as a digital number (DN). 

To obtain a useful proxy for human activity within a given location, we exclude all pix-

els that do not cover land surface. Following Elvidge et al. (2009), we drop all pixels in 

gas flaring zones. In addition, we mask areas around (active) volcanoes and known 

wildfires.  

As on-board sensors degrade over time, the DMSP launches a new satellite every 3 to 6 

years. In 12 of the 22 available years, two satellites were in orbit simultaneously. We 

deal with years in which more than one composite night-light image is available by 

choosing the satellite with the best coverage of valid nights per pixel in a given year on 

the basis of summary statistics for each respective satellite-year layer. If the number of 

valid nights for a pixel is zero (i.e., no observations in that year), it is dropped from the 

data. We then aggregate the cleaned night-light layers and compute the mean light in-

tensity for the 0.5°×0.5° grid cells. Our proxy for local economic activity is thus the 

average annual night-time light emission at the grid cell level.  

Population. Population at the pixel level is available from the Gridded Population of 

the World (GPW version 4) dataset provided by the Center for International Earth Sci-

ence Information Network (CIESIN). The data contain 5-year target estimates based on 

census inputs gathered at the lowest available administrative unit. CIESIN redistribute 

the data from the administrative census boundaries to a uniform pixel grid by using aer-

ial weights. We aggregate pixel data to grid cells by summing population numbers with-

in each cell. To interpolate the years between the given 5-year periods, we assume sta-

ble exponential population growth. 



Rural/Urban Classification. We use MODIS land-use data provided by the FAO for 

the year 2001. The data include information on the extent of urban or crop areas at a 

spatial resolution of 15 arc-seconds (i.e., 500 meters), obtained from MODIS satellite 

imagery using a supervised decision tree classification algorithm with region-specific 

parameters (Schneider et al., 2009). Urban land-use comprises all human-constructed 

elements (e.g., buildings and roads), while crop land-use comprises all kinds of cultivat-

ed fields. Pixel locations are defined according to the type of land-use they are dominat-

ed by (i.e., coverage of at least 50% of a given pixel unit). We aggregate the data to grid 

cell units by computing the cell level shares of each land-use pixel type.   



Annual cell level GAME-LIGHTS Data 

STATA file: GAME_LIGHTS_92-99.dta 

▪ 0.5° x 0.5° grid cell-year data on night-time light emissions, excessive precipita-

tion, droughts, cold spells, storms, and population data; simple or rolling win-

dow weighted averages for weather anomalies for the years 1992 to 1999. 

STATA file: GAME_LIGHTS_00-13.dta 

▪ 0.5° x 0.5° grid cell-year data on night-time light emissions, excessive precipita-

tion, droughts, cold spells, storms, and population data; simple or rolling win-

dow weighted averages for weather anomalies for the years 2000 to 2013. 

 

The two data sets have exactly the same structure and can easily be combined by using 

the stata code “append”. 

 

The variable layout for this version of the data is detailed below. 

objectid  cell identifier 

year                 year of weather anomaly               

iso3_1                  3-digit iso code of country 1 in cell 

iso3_2                 3-digit iso code of country 2 in cell 

iso3_3                  3-digit iso code of country 4 in cell 

iso3_4                  3-digit iso code of country 5 in cell 

carea               geodesic cell area (in square kilometers) 

lat  decimal degrees latitude (cell center) 

lon    decimal degrees longitude (cell center) 

tempdif_cold  yearly mean of negative temperature difference from long-

run mean (abs °C, sd weight) 

tempdif_cold_rolling  yearly mean of time-weighted negative temperature differ-

ence from long-run mean (abs °C, sd weight) 

maxtempdif_cold_rolling yearly maximum of time-weighted negative temperature 

difference from long-run mean (abs °C, sd weight) 

precdif_cens  yearly mean of positive precipitation difference from long-

run mean (mm/day, sd weight) 

precdif_cens_rolling  yearly mean of time-weighted positive precipitation dif-

ference from long-run mean (mm/day, sd weight) 



maxprecdif_cens_rolling yearly maximum of time-weighted positive precipitation 

difference from long-run mean (mm/day, sd weight) 

nspei3_cens  yearly mean of -1*3month standardized precipitation 

evapotranspiration index (SPEI) censored at 0 

nspei3_cens_rolling  yearly mean of time-weighted -1*3month standardized 

precipitation evapotranspiration index (SPEI) censored at 

0 

maxnspei3_cens_rolling yearly maximum of time-weighted -1*3month standard-

ized precipitation evapotranspiration index (SPEI) cen-

sored at 0 

combik3  yearly mean of windspeed (kt) (fields, krige3) 

combik3_rolling  yearly mean of time-weighted windspeed (kt) (fields, 

krige3) 

maxcombik3_rolling  yearly maximum of time-weighted windspeed (kt) (fields, 

krige3) 

meanlights  average light intensity (best satellite available) 

toplights  number of top-coded pixels (best satellite available) 

bottomlights  number of bottom-coded pixels (best satellite available) 

pop  total population (interpolated exponentially between 5-

year intervals) 

meancrops  percentage crops land cover 

meanurban  percentage urban land cover 

meansnowice  percentage snow/ice land cover 
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