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Abstract 
 
We consider an overlapping generations (OLG) economy with land as a fixed factor of 
production and an environmental externality on production in which tax revenue from land rent 
and/or from other schemes such as labor income, capital income, and production taxation can be 
used for environmental protection through investment in emission mitigation. We show that, for 
any given target of stationary stock of pollution, the land rent taxation scheme leads to a higher 
steady state capital accumulation than the other schemes, and hence the steady state 
consumption of agents when young under this scheme is also higher than under the others. In 
addition, under an ambitious mitigation target when the efficiency of the mitigation technology 
is relatively high compared to the dirtiness of production, the land rent taxation also provides a 
higher steady state consumption when old, resulting in higher social welfare, than the others. In 
the second part of the paper, we propose a period-by-period balanced budget policy, which 
includes land rent and capital income taxes with intergenerational transfers, to decentralize the 
socially optimal allocation during the transitional phase to the social planner's steady state. 
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1 INTRODUCTION

1 Introduction

The crucial purpose of pollution mitigation is to reduce the long-term damage of climate change and
hence to improve the social welfare towards sustainable development. The Paris Climate Agreement
on limiting global warming in this century and beyond to well below 2 degrees centigrade above
pre-industrial level indeed requires strict long-term and persistent global emission mitigation e�orts.
These are essentially �nanced through taxation schemes, and hence probably lessen capital accu-
mulation and economic growth. These e�orts, however, may contradict the poverty reduction goal
unless an appropriate climate policy is designed. This requires an e�cient tax policy to support the
calls for climate change mitigation from both scientists and policy makers. We engage in this discus-
sion by presenting an OLG economy with land as a �xed factor of production and an environmental
externality on productivity in which pollution is a by-product of production. Within this framework,
we will evaluate the long-term impacts of climate change mitigation policy on capital accumulation
and social welfare under alternative tax policies, and consider the possibility of obtaining the socially
optimal allocation.

Our paper integrates two theoretical strands in the environmental economics and public �nance
literature. The �rst is a sizable literature concerning environmental quality and long-term growth,
as well as the decentralization of socially optimal allocation. Papers by Howarth and Norgaard
(1992) and John and Pecchennino (1994) are two of the pioneers in this �eld which is recently
revisited and advanced by Dao and Dávila (2014) and Dao and Edenhofer (2018). The second is
the literature of incidence of rent taxation on �xed factor of production (Feldstein 1977, Calvo et al.
1979, Chamley and Wright 1987, and recently Edenhofer et al. 2015). While the �rst strand focuses
on correcting environmental externalities, it ignores land as a factor of production, and tax on its
rent can be a source for public spending. The second strand does not take environmental issues
into account. If we consider the fact that pollution is a by-product of production, then enhancing
capital accumulation will degrade the environment which will have negative feedback on production
in the future. Therefore, it is reasonable to think that the environmental protection policy needs to be
combined with land rent taxation in order to guarantee an improvement in social welfare. This paper
attempts to �ll this gap in the literature. We will point out that, for a given target of stationary stock
of pollution under the climate change mitigation agreement, land rent taxation can be an e�cient
instrument for mitigation. We argue that it will lead to higher stationary capital accumulation and
consumption, hence greater stationary welfare, than other taxation schemes. In addition, the land
rent tax can be combined with appropriate capital income tax and intergenerational transfers in
order to decentralize the socially optimal allocation.

The role of tax on land was indeed addressed extensively by classical economists. In particular,
the American political economist Henry George (1839 - 1897) is famous for the idea that land (or
resource) rent should be taxed for public use or share. George (1879) proposed a single tax on
land in lieu of distortion taxes on labor and productive investment. According to George's (1879)
perspective of justice, the economic value derived from natural resources, including land, should
belong equally to all citizens of a society.1 In addition, in contrast with taxation on other factors
of production, tax on land does not change the size of land and may enhance capital accumulation
through the portfolio e�ect of owning land and holding capital. Indeed, in an OLG model without
an environmental externality or the e�ect of infrastructure, Feldstein (1977) points out that capital
accumulation can be enhanced, and thus welfare improved, through the taxation of the rent from
land. That is because the taxing of land rent will shift the savings of a household's portfolio towards
capital accumulation.2 The theoretical results in this paper consolidate George's ideas in the context

1For more discussion about this single tax, see George (1890).
2This tax incidence in Feldstein (1977) is then analyzed in re�ned models such as Calvo et al. (1979) which introduces the bequest

motive, and Chamley and Wright (1987) which analyzes both the static and dynamic e�ects of land rent tax. Petrucci (2006) and
Koethenbuerger and Poutvaara (2009) also consider the e�ects of land rent taxation on capital accumulation and improving welfare but
they study this in the framework of small and open economies.
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2 THE MODEL

of investing in climate change mitigation.
The paper also relates to the literature of land tax and investment in public goods or infrastructure

(Arnott and Stiglitz 1979, Rangel 2005, Mattauch et al. 2013, and Behrens et al. 2015). Arnott
and Stiglitz (1979) and Behrens et al. (2015) focus on static models investigating the relationship
between aggregate urban land rent and local public good provision in which the authors identify
general conditions under which the Henry George theorem holds. Rangel (2005) sets up a two-period
two-generation political economy to study institutional implementation over alternative taxation and
debt regimes, including a land-tax-only scheme, to obtain Pareto improvement through investing in
intergenerational public goods. In a continuous time Ramsey model, Mattauch et al. (2013) show
that when land rent is su�ciently high, the social optimum can be obtained by using the land
rent tax revenue to invest in public infrastructure. Such investment is less rigorous in the laissez-
faire economy. Our paper di�ers from this body of literature by incorporating an environmental
externality, in an OLG model à la Diamond (1965), to study the incidence of land rent taxation
on environmental protection and welfare. We will compare this to other schemes such as capital
income, labor income and production taxation. In addition, we propose a combination of land rent
tax, capital income tax, and intergenerational transfers in order to decentralize the socially optimal
allocation during the transitional phase as a competitive outcome.

There is a sizable literature relating climate change to fossil energy extraction. A gradual rise in
carbon tax hasten the extraction of fossil energy as its owners face a sharp decline in demand for
this energy in the long-term. This increases carbon emissions in the short-term, creating a so-called
Green Paradox which is pioneered by Sinn (2008). Grafton et al. (2012) and Van der Ploeg and
Withagen (2012) then characterize the conditions and timing of the carbon tax which cause such
a Green Paradox. Our paper abstracts from fossil energy extraction and hence we do not address
the Green Paradox. We do not, however, necessarily contradict this literature since we focus on
di�erent aspects. Particularly, we consider that in the long run, it can be e�cient for the revenue
from non-distortion land rent tax to be invested in emission mitigation. The consideration of these
topics together should be addressed in a di�erent setup.

The rest of the paper is organized as follows. The basic model is presented in section 2. The
competitive equilibrium and steady state are de�ned in section 3. Section 4 examines the e�ects of
taxation schemes on steady state stock of pollution and capital accumulation. We compare these
e�ects on capital accumulation and welfare of taxation schemes in section 5. Section 6 characterizes
the socially optimal allocation from the viewpoint of the social planner. A strategy decentralizing
the socially optimal allocation is proposed in section 7. Finally, section 8 concludes the paper.

2 The model

We consider a privately owned OLG economy with land as a �xed factor of production and an
environmental externality on production. The �nal output is produced from capital, labor, and land.
Agents or households live for two periods �say young and old. They work when young to earn
income for consumption during their youth, savings in terms of capital and land ownership. They
buy land from the previous generation and sell it to the subsequent generation. Their capital and land
are rented to producing �rms. The capital savings with its returns, land rent, and sale of land are
consumed in the second period of life. We do not consider the bequest motives of agents. We adopt
some standard assumptions, which are widely used in the literature, namely the perfect competition
in the �nal good sector and the constant returns to scale property of �nal good production function
over its factor of productions. We, however, make discussions in Appendix A6 about relaxing these
assumptions and about the robustness of the paper's results.
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2.1 Dynamics of pollution stock and production 2 THE MODEL

2.1 Dynamics of pollution stock and production

We assume the dynamics of pollution stock as follows

Et = (1− δ)Et−1 + ξYt − γMt

where Et ∈ R is the index of pollution stock (the so-called carbon concentration) in period t; ξYt is
the pollution arising from the production as an inevitable by-product; γMt is pollution abatement
coming from the mitigation e�ort Mt. The ξ > 0 is the dirtiness coe�cient of production and γ > 0
is the e�ectiveness coe�cient of mitigation technology. The δ ∈ (0, 1] is the decay rate of pollution
stock which measures the convergent speed of pollution stock to the natural state E = 0.

The �nal good �rms operate under perfect competition and follows production function

Yt = z(Et−1)F (Kt, Lt, X) (1)

where z(Et−1) is total factor productivity in t which depends on the stock of pollution in the previous
period. Note that the past stock of pollution a�ects the current productivity, re�ecting the long-term
e�ect of pollution. We assume that z(E) = z̄ > 0 for E ≤ 0,3 z′(E) < 0 for E > 0, z′(0+) = 0, and

lim
E→+∞

z(E) = 0. The F exhibits constant returns to scale over capital K, labor L, and land X; and

Fi(K,L,X) > 0, Fii(K,L,X) < 0, Fij(K,L,X) > 0 where i, j ∈ {K,L,X}, i 6= j. The returns to
factors of production are determined by their marginal productivity, i.e.

rt = z(Et−1)FK(Kt, Lt, X) (2)

wt = z(Et−1)FL(Kt, Lt, X) (3)

xt = z(Et−1)FX(Kt, Lt, X) (4)

where rt, wt, and xt are respectively returns to capital, labor, and land. For simplicity without loss
of generality, we follow Feldstein (1977) by assuming that capital does not depreciate.

2.2 Agents

We consider an economy without population growth consisting of Lt identical agents. Without lost
of generality, we normalize Lt = 1 for all t ∈ N. Each agent t lives for two periods.4 In the �rst period
of life, the agent t is endowed with one unit of labor which he supplies inelastically to the market to
earn labor income. He allocates that income to consumption when young cyt , and savings in terms of
physical capital kt+1, which will be rented to producing �rms, and savings in terms of holding land
X, which will be rented to producing �rms and sold to the succeeding generation in the next period.
These savings will be fully consumed in the second period of life. The agent t has preferences over
consumptions when young and old (cyt , c

o
t+1) ∈ R2

+, represented by U(cyt , c
o
t+1) = u(cyt ) + v(cot+1) with

u′, v′ > 0, u′′, v′′ < 0, and u and v satisfy Inada conditions.5

The life-time utility maximization problem of the agent is

3For simpli�cation, we assume z(E) is a positive constant for E ≤ 0. One may argue that z′(E) > 0 for E < 0. Indeed, capturing this
assumption does not crucially change the analytical results of this paper. Moreover, the case E < 0 is not a focus of our paper.

4We assign the time index t to an agent, say agent t, implying that the agent becomes adult (or young) in period t and old in period
t+ 1. A similar idea is applied for a generation as a whole.

5We can extend the model by introducing the disutility of pollution in the preference. The utility function can be presented as
Ũ(cyt , c

o
t+1, Et+1) = u(cyt ) + v(cot+1) + π(Et+1) where for all E > 0, π′ < 0 and π′′ > 0. We assume the a�ect of each agent t is negligible

to the stock of pollution, hence it has no incentive to internalize the environmental externality and always treats Et+1 as given in solving
its optimization problem. However, the qualitative results do not change when we model preference in this way. So, in order to illustrate
the ideas, we keep the model simple and thus abstract disutility of pollution from the utility function.
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max
cyt ,kt+1,cot+1,X

u(cyt ) + v(cot+1) (5)

subject to : cyt + kt+1 + ptX ≤ (1− τL)wt (6)

cot+1 ≤
[
1 + (1− τK)rt+1

]
kt+1 +

[
(1− τX)xt+1 + pt+1

]
X (7)

given wt, perfect foreseen rt+1, and the prices of land pt and pt+1 in t and t + 1, respectively;
τX , τK , τL ∈ [0, 1] are the tax rates on land rent, capital income, labor income respectively. Equations
(6) and (7) describe the budget constraints of the agent in young and old period, respectively.6

Under standard assumptions on u and v above, guaranteeing the concavity of the objective func-
tion and the interiority of the optimal solution, the choice of the agent is characterized by

u′(cyt )
0

v′(cot+1)
0

 = λt


1
1
0
pt

+ µt


0

−1− (1− τK)rt+1

1
−(1− τX)xt+1 − pt+1

 (8)

for some λt, µt > 0, and the budget constraints (6) and (7) are binding; i.e.

u′(cyt )

v′(cot+1)
= 1 + (1− τK)rt+1 (9)

cyt + kt+1 + ptX = (1− τL)wt (10)

cot+1 =
[
1 + (1− τK)rt+1

]
kt+1 + (1− τX)xt+1X + pt+1X (11)

[
1 + (1− τK)rt+1

]
pt = (1− τX)xt+1 + pt+1 (12)

where the last equation is the no-arbitrage condition between savings in terms of land and capital;
equation (9) is Euler equation re�ecting the optimal allocation between consumption and savings.

3 Equilibrium and steady state

Without loss of any generality, we normalize X = 1. For lightening the notation, we denote the
function F (Kt, L;X) and its derivatives as F t, F t

i , and F t
ij where i, j ∈ {Kt, L,X}. Since we

normalize the size of population by 1, then Kt = kt for all t. We assume that all tax revenue will be
used for emission mitigation. Hence, the mitigation in period t is

Mt = τKz(Et−1)F
t
Kkt + τLz(Et−1)F

t
L + τXz(Et−1)F

t
X = z(Et−1)F

t
∑
i

σitτ
i

where σit and τ
i are respectively the share in �nal output and the tax rate on the income of production

factor i ∈ {K,L,X}. We de�ne the equilibrium and steady state as follows:
Equilibrium: Under the given tax rates τX , τK , τL and sequence of land prices {pt}+∞t=0 satisfying

the non-arbitrage condition (12), the competitive equilibrium is characterized by: (i) the agent's
utility maximization (5) under the budget constraints (6) and (7); (ii) the returns of the production
factors as in (2), (3), and (4); (iii) the dynamics of the pollution stock. The competitive equilibrium

6Note that, from this section until section 5, we assume that all tax revenue is used for emission mitigation. Hence, there are no
lump-sum transfers in the budget constraints. In section 7, such lump-sum transfers will appear in implementing the optimal allocation.
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allocation {cyt , kt+1, c
o
t+1, Et}t, which fully characterizes the competitive equilibrium of the economy,

is the solution to the following system of equations, given Et−1, kt, pt:7

u′(cyt )

v′(cot+1)
= 1 + (1− τK)z(Et)F

t+1
K (13)

cyt + kt+1 + pt = (1− τL)z(Et−1)F
t
L (14)

cot+1 =
[
1 + (1− τK)z(Et)F

t+1
K

]
(kt+1 + pt) (15)

Et = (1− δ)Et−1 + (ξ − γ
∑
i

σiτ i)z(Et−1)F
t (16)

By doing some simple substitutions and transformations, the competitive equilibrium of the econ-
omy can be fully characterized by the following system of the Euler equation, dynamics of pollution
stock, and no arbitrage condition, given E−1, k0, p0:

u′
(
(1− τL)z(Et−1)F

t
L − kt+1 − pt

)
v′
([

1 + (1− τK)z(Et)F
t+1
K

]
(kt+1 + pt)

) = 1 + (1− τK)z(Et)F
t+1
K (17)

Et = (1− δ)Et−1 + (ξ − γ
∑
i

σiτ i)z(Et−1)F
t (18)

pt+1 =
[
1 + (1− τK)z(Et)F

t+1
K

]
pt − (1− τX)z(Et)F

t+1
X (19)

Competitive steady state: Under the tax rates τX , τK , τL ∈ [0, 1], the competitive steady state

of the economy is characterized by Euler equation (20) and equation (21) which equalizes the decay

of pollution and �ow of pollution, while the stationary land price is p = (1−τX)FX
(1−τK)FK

,

u′
(

(1− τL)z(E)FL − k − (1−τX)FX
(1−τK)FK

)
v′
(

[1 + (1− τK)z(E)FK ][k + (1−τX)FX
(1−τK)FK

]
) = 1 + (1− τK)z(E)FK (20)

δE = (ξ − γ
∑
i

σiτ i)z(E)F. (21)

4 E�ects of taxation schemes

We now study the long-term e�ects of each taxation scheme on stock of pollution and capital accumu-
lation. In this section, for the purpose of exposition, we specify the functional forms of utility and pro-
duction. We consider a benchmark model with the logarithm preference U(cyt , c

o
t+1) = ln cyt +β ln cot+1

where β ∈ (0, 1) is the time preference parameter of the agent, and the Cobb-Douglas production
function F t = KαK

t LαLXαX ≡ kαKt , 0 < αK , αL, αX < 1, αK + αL + αX = 1. For these functional
forms, the system of equations characterizing the steady state now boils down to[

1 +
(1− τX)αX
(1− τK)αK

]
k − βαL(1− τL)

1 + β
z(E)kαK = 0 (22)

7Equation (15) is derived from equations (11) and (12). Note that, we normalize the size of land X = 1, thus the notation X does not
appear in equation (15).
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4.1 Land rent taxation 4 EFFECTS OF TAXATION SCHEMES

δE − (ξ − γ
∑
i

αiτ i)z(E)kαK = 0, i ∈ {K,L,X} (23)

Note that for the Cobb-Douglas production function, αi is the share in �nal output of production
factor i ∈ {K,L,X}. The existence and uniqueness of the steady state, as well as the dynamic
system of the economy and its convergence to the steady state are presented in Appendix A0.

4.1 Land rent taxation

Under the land rent taxation scheme only, the system (22) - (23) becomes

αK + (1− τX)αX
αK

kX −
βαL

1 + β
z(EX)kαKX = 0 (24)

δEX − (ξ − γτXαX)z(EX)kαKX = 0 (25)

where EX and kX are respectively steady state stock of pollution and capital per capita under the
land rent taxation scheme.

Proposition 1 below states the existence and uniqueness of the steady state under the land rent
taxation scheme and its e�ects on the steady state stock of pollution and capital accumulation.

Proposition 1. In the OLG economies with F = kαK and U(cy, co) = ln cy + β ln co set up above: If
αK < 1

2
and ξ

γ
< 1− αK + αX then ∂EX

∂τX
< 0 and ∂kX

∂τX
> 0;

Proof. See Appendix A1.

Proposition 1 implies that if the share of capital to �nal output is not too high, particularly
αK < 1/2, and the mitigation is su�ciently e�ective, particularly ξ/γ < 1 − αK + αX , then the
higher the land rent tax τX ∈ [0, 1] the lower the steady state stock of pollution and the higher
the steady state capital per capita. This is because, when the mitigation technology is relatively
e�ective compared to the dirtiness of production, the e�ect of mitigation will be strong in reducing the
pollution stock. The improved environmental quality then increases the output and hence enhances
capital accumulation, which in turn, degrades the environment. On the other hand, as the share of
capital to �nal output is not too high then the e�ect of capital accumulation on carbon concentration
will be dominated by the mitigation which is supported by land rent tax revenue.

4.2 Capital income taxation

Under the capital income taxation scheme only, the system (22) - (23) becomes

αX + (1− τK)αK
(1− τK)αK

kK −
βαL

1 + β
z(EK)kαKK = 0 (26)

δEK − (ξ − γτKαK)z(EK)kαKK = 0 (27)

where EK and kK are respectively the steady state stock of pollution and capital per capita under
the capital income taxation scheme.

Proposition 2. In the OLG economies with F = kαK and U(cy, co) = ln cy + β ln co set up above:
∂EK
∂τK

< 0 while ∂kK
∂τK

is ambiguous.
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4.3 Labor income taxation 4 EFFECTS OF TAXATION SCHEMES

Proof. See Appendix A1.

Proposition 2 addresses the e�ects of the capital income tax on the steady state stock of pollution
and capital accumulation. The higher tax rate leads to a lower steady state stock of pollution. This
result is rather intuitive. Capital income taxation provides two reinforcing e�ects on environmental
protection. First, the tax revenue from capital income is used for mitigation, hence it directly
decreases the stock of pollution. Second, when capital income is taxed, agents will shift the savings
of their portfolio towards land value ownership, thereby reducing capital accumulation, which in turn
leads to lower pollution. It is interesting to note that although under the capital income taxation
scheme agents tend to shift the savings of their portfolio towards land value ownership, the steady
state capital per capita under this scheme is not necessarily lower than that under a laissez-faire
economy without any intervention. Indeed, an increase in τK has two opposite e�ects on steady state
capital. Firstly, emission mitigation supported by tax revenue enhances the total factor productivity
of the economy, and hence improves the labor income. This has the e�ect of accelerating capital
accumulation. Secondly, taxing capital income causes agents to partially shift their savings to land
value ownership, hence lessening the capital accumulation. Therefore, the net e�ect depends on the
responsiveness of the damage function z(E) to the change in stock of pollution and on the level of
the tax rate τK .

4.3 Labor income taxation

Under the labor income taxation scheme only, the system (22) - (23) becomes

αK + αX
αK

kL −
β(1− τL)αL

1 + β
z(EL)kαKL = 0 (28)

δEL − (ξ − γτLαL)z(EL)kαKL = 0 (29)

where EL and kL are respectively the steady state stock of pollution and capital per capita under
the labor income taxation scheme.

Proposition 3. In the OLG economies with F = kαK and U(cy, co) = ln cy + β ln co set up above:
∂EL
∂τL

< 0 while ∂kL
∂τL

is ambiguous.

Proof. The proofs are quite similar to the proofs of proposition 2.

The e�ect of a labor income taxation scheme on steady state stock of pollution is similar to
that of capital income taxation. Labor income taxation also has two reinforcing e�ects on emission
mitigation. First, the tax revenue is used for emission mitigation hence it directly decreases the
stock of pollution. Second, the labor income tax decreases capital accumulation by decreasing the
disposable income of agents. In this way, it causes the �nal output to decline and hence reduces emis-
sions. However, the general equilibrium e�ect of this scheme on capital accumulation is ambiguous
because the lower stock of pollution increases the total factor productivity which enhances capital
accumulation by increasing the labor income. So the e�ect of labor income taxation on steady state
capital accumulation depends on the tax rate and the responsiveness of the damage function z(E)
to the change in pollution stock. Note that unlike the e�ects of capital income taxation, the change
in portfolio of savings between capital and land is unclear because the labor income taxation has
symmetric e�ects on savings in land and in capital.

8



4.4 Production taxation 5 COMPARISON OF TAXATION SCHEMES

4.4 Production taxation

Now we suppose that the government collects tax revenue on production, say a production tax, in
order to invest in mitigation. Under this taxation scheme τ p ∈ [0, 1) alone, the steady state of the
economy is characterized by

αK + αX
αK

kP −
βαL(1− τP )

1 + β
z(EP )kαKP = 0 (30)

δEP − (ξ − γτP )z(EP )kαKP = 0 (31)

where EP and kP are respectively the steady state stock of pollution and capital per capita under
the production taxation scheme.

Proposition 4. In the OLG economies with F = kαK and U(cy, co) = ln cy + β ln co set up above:
∂EP
∂τP

< 0 while ∂kP
∂τP

is ambiguous.

Proof. The proofs are quite similar to the proofs of proposition 2.

In line with the other schemes above, the steady state stock of pollution also decreases in the
production taxation scheme. That is because this scheme has at least two reinforcing e�ects on
emission mitigation. First, the tax revenue is used for mitigation, hence the pollution stock is
directly reduced. Second, the production tax decreases the labor income received by the agents, hence
reducing the capital accumulation. Therefore, it indirectly decreases the pollution stock. As with the
e�ect of capital income taxation on capital accumulation, we need to be cautious in evaluating the
e�ect of production taxation scheme on capital accumulation. Although the production tax directly
reduces the net labor income of agents, hence reducing the savings, the steady state capital per capita
is not necessarily lower than that under a laissez-faire economy without any intervention. On the
one hand, as stated in proposition 4, this scheme leads to a lower stationary stock of pollution, hence
improves the total factor productivity. In this way, this policy increases the labor income, enhancing
the capital accumulation. On the other hand, the policy directly decreases the net labor incomes by
imposing a tax rate τP > 0 on the revenue of the producing �rms. Which e�ect becomes dominant
depends on the responsiveness of the damage function z(E) to the change in E and on the level of
the tax rate τP .

5 Comparison of taxation schemes

The idea of this section is inspired by the Paris agreement which requires that the long-term global
temperature be limited to well below 2 degree centigrade (and even ambitiously limited below 1.5
degree centigrade) above pre-industrial level. Such a policy goal can be translated into a stationary
carbon concentration target set by governments. In order to obtain this target, a government imple-
ments emission mitigation through its tax policies as described above. However, these tax policies, in
achieving a government's target, may lead to di�erent long-term capital accumulation, thus di�erent
consumption and welfare. In this section, we study the long-term e�ects of each taxation scheme
on capital accumulation, given a target of stationary stock of pollution. We then compare these
e�ects on consumption and welfare between taxation schemes. We suppose that the government has
a target E for the long-term stationary pollution stock. This target can be determined through one
of the tax and mitigation schemes detailed above.

9



5 COMPARISON OF TAXATION SCHEMES

Proposition 5. In the OLG economies with F = kαK and U(cy, co) = ln cy +β ln co set up above, given
a target on steady state stock of pollution E ∈ [0, Ẽ), where Ẽ is the steady state stock of pollution
in case of no mitigation, then:

(i) kX > max{kK , kP};
(ii) kP > kL;
(iii) if 1− τK > (=)(<) αX(αL − αK)/α2

K then kK > (=)(<) kL;
(iv) if αX ≥ α2

K/(1− αK) then kP > kK.

Proof. See Appendix A2.

The results (i) and (ii) in proposition 5 imply that the land rent taxation will lead to the highest
capital accumulation. Importantly, they indicate that the land rent taxation scheme may be more
e�cient than the other schemes in combating climate change and obtaining better social welfare in
the long term. That is because, unlike other schemes, it does not decrease the agents' disposable
income when young. Moreover, it causes agents to shift their savings towards capital accumulation,
whereas capital income taxation has the opposite e�ect. The production and labor income taxation
schemes directly decrease the disposable income and hence lessen the capital accumulation compared
to the land rent taxation scheme.

Statement (iii) compares the capital accumulation under capital income taxation and labor income
taxation schemes. Which scheme leads to higher capital accumulation depends on the extent of
climate policy ambition. When the steady state stock of pollution is set at an unambitious level,
requiring the tax rate on capital income or labor income to be not too high, in particular τK <
1− αX(αL − αK)/α2

K , then the former leads to higher capital accumulation than the latter and vice
versa. This result can be interpreted as follows. When the climate policy is not su�ciently ambitious,
both tax rates on capital income and labor income for emission mitigation corresponding to these two
taxation schemes will be low. The e�ect of the low capital income tax in adjusting the savings of the
agent's portfolio is not strong enough to cause a greater decrease in capital accumulation than that
under the labor income taxation scheme. The latter generates a decrease in capital accumulation
through a direct decrease in the disposable incomes of agents. Therefore, in this case, kK > kL. The
situation is reversed when the climate policy is su�ciently ambitious.

Statement (iv) compares the production taxation and capital income taxation schemes under a
given condition. When the share of land to output is large enough compared to that of capital, in
particular when αX ≥ α2

K/(1−αK) holds,8 the production taxation scheme always leads to a higher
steady state capital accumulation than the capital income taxation scheme, given a steady state
pollution stock. This is because when the share of capital to �nal output is relatively low compared
to that of land, then under the capital income taxation scheme the tax rate needs to be high to obtain
the given target of pollution stock. Therefore, the price of land under the capital taxation scheme
will be relatively high compared to the income of agents. As a consequence, the capital accumulation
is lower than that achieved in the case of production taxation.

The heterogenous e�ects of taxation schemes on capital accumulation may be the cause of the
di�erence in the steady state welfare between schemes. Capital accumulation is highest under the
land rent taxation, which results in the highest �nal output and �ow of pollution. This scheme,
however, requires a higher investment in pollution mitigation than the others. So, it may be di�cult
to evaluate the welfare e�ects between these schemes. The following proposition provides some
comparisons about consumption which may be useful for welfare analyses.

Proposition 6. In the OLG economies with F = kαK and U(cy, co) = ln cy +β ln co set up above, given
a target on steady state stock of pollution E ∈ [0, Ẽ), we have:

(i) cyX > max{cyP , c
y
K , c

y
L};

8The condition αX ≥ α2
K/(1− αK) satis�es for αK = 1/3 and αX ≥ 1/6 which may hold in the reality.

10



5 COMPARISON OF TAXATION SCHEMES

(ii) if ξ/γ ≤ αX + αK, then c
o
X > coK;

(iii) if τP ≤ 1−
[

αK+αX
αK+αX(1−τK)−1

]αK
, then cyP ≥ cyK and coP > coK.

(iv) if τP ≥ 1−
[
αX(1−τX)+αK

αX+αK

]1−2αK
, then coX > coP ;

(v) if τL ≥ 1−
[
αX(1−τX)+αK

αX+αK

] 1−2αK
αK , then coX > coL.

Proof. See Appendix A3.

Proposition 6 provides interesting results on comparisons of consumption between taxation schemes.
These results straightforwardly concern comparisons of welfare. Under given conditions, the land
rent taxation scheme provides a higher steady state welfare than the other schemes. In statement
(i), the consumption when young is highest under the land rent taxation scheme simply because this
scheme leads to the highest capital accumulation, hence the greatest disposable labor income, while
the savings rate under logarithm utility is constant.

In statement (ii), when the mitigation technology is e�ective enough, in particular ξ/γ ≤ αX+αK ,9

then the consumption when old under land rent taxation is higher than that under capital income
taxation. That is because, for a given target of stationary pollution stock, the better the mitigation
technology lowers the tax rates imposed on land rent and capital income corresponding to these two
schemes. Hence, the relative capital gap, kX/kK , is closer to 1,10 but always greater than 1. The
lower relative gap kX/kK has two opposite e�ects on the relative gap of consumption coX/c

o
K . On

the one hand, the lower relative gap kX/kK leads to a lower relative gap of labor income, and hence
a lower relative gap of savings between these two taxation schemes. On the other hand, the lower
kX/kK decreases the di�erence in returns on capital, [1+z(E)αKk

αK−1
X ]/[1+(1− τK)z(E)αXk

αK−1
K ],

between these schemes. When the mitigation technology is e�ective enough, the di�erence in returns
on capital, under these taxation schemes, is strictly dominated by the corresponding di�erence in
savings. As a consequence, coX > coK .

Statement (iii) provides a su�cient condition relating to production and capital income tax rates
in comparing the consumption under these schemes. If the former is relatively low compared to the

latter, in particular τP ≤ 1−
[

αK+αX
αK+αX(1−τK)−1

]αK
holds,11 then the former leads to higher stationary

consumption for both the young and the old. As the proof for this statement shows, when the
condition above holds, the disposable income of an agent when young and the net return to savings
under the production taxation scheme are higher than those under the capital income taxation
scheme. This also results in higher consumption, when young and old, under the production taxation
scheme. It implies that, with an ambitious target of stationary pollution stock, the steady state
welfare under the production taxation will be higher than that under capital income taxation.

Statements (iv) and (v) state that if production and labor income tax rates are relatively high
compared to the land rent tax rate, then the steady state consumption when old under land rent
taxation scheme is higher than those under production and labor income taxation schemes. That
is because the relatively high production tax rate not only reduces disposable income, and hence
savings, but also su�ciently lowers the net return on capital. The relatively high labor income tax

9Note that this condition is just a su�cient condition under which coX > coK holds.

10Indeed, in the proof of proposition 5 we know that kX
kK

=
[
αK+αX (1−τK)−1

αK+αX (1−τX )

] 1
1−αK which is increasing in τK and τX .

11This condition may hold for an ambitious target for stationary pollution stock. For instance, suppose that the target for stationary
stock of pollution is zero, E = 0. For this extreme target, that condition boils down

ξ

γ
≤ 1−

[
αK + αX

αK + αXγαK/(γαK − ξ)

]αK
which is satis�ed when γαK is very close to ξ.
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6 SOCIAL PLANNER'S ALLOCATION

rate leads to low disposable income, hence low savings. So the steady state consumption when old
under these schemes will be lower than that under the land rent taxation scheme.

The next proposition characterizes a condition under which the land rent taxation provides highest
steady state welfare among four schemes.

Proposition 7. In the OLG economies with F = kαK and U(cy, co) = ln cy+β ln co set up above, under
plausible values of parameters that αL < 2αK < 3−

√
5,12 if

ξ

γ
≤ (αK + αX)

[
1−

(
1− 2αK
1− αL

) 1
2αK

]
(32)

then there exists ambitious targets of steady state stock of pollution E under which coX > max {coK , coP , coL}.

Proof. See Appendix A3.

Proposition 7 implies that if the e�ciency of mitigation technology γ is relatively high compared
to the dirtiness of production ξ, particularly the condition (32) holds, then under a su�ciently
ambitious target of steady state stock of pollution the land rent taxation scheme will lead to the
highest steady stead consumption when old, i.e. coX > max {coK , coP , coL}. As apparent in the proof
of this proposition, the condition (32) makes conditions in (iv) and (v) of proposition 6 hold under
a su�ciently ambitious target of steady state stock of pollution.13 Hence, the mechanisms leads to
the highest steady state consumption when old under the land rent taxation scheme are analyzed
within the statements (iii), (iv), and (v) of proposition 6. By combining this result with the result in
statement (i) of proposition 6, we observe that the land rent taxation scheme may provide a strictly
higher steady state welfare than other schemes.

6 Social planner's allocation

In this section, we consider the optimal allocation from the viewpoint of a benevolent social planner,
who seeks to maximize the social welfare of all generations. The social planner's problem is

max
{cyt ,cot ,kt+1,Mt,Et}+∞

t=0

+∞∑
t=0

u(cyt ) + (1 +R)v(cot )

(1 +R)t
(33)

subject to, ∀t = 0, 1, 2, ...

cyt + cot + kt+1 +Mt ≤ z(Et−1)F
t + kt (34)

Et = (1− δ)Et−1 + ξz(Et−1)F
t − γMt (35)

for given initial conditions k0 > 0, E−1; and R > 0 is the subjective discount rate of the planner. The
objective function (33) is the social welfare function, equations (34) and (35) represent the feasibility
constraint of society and the dynamics of pollution stock determined in t, respectively.

The social planner's allocation
{
cy,st , co,st , k

s
t+1,M

s
t , E

s
t

}+∞
t=0

and sequence of Lagrangian multipliers

{µt, ηt}+∞t=0 , where µt and ηt are respectively Lagrangian multipliers (or shadow prices) associated
with constraints (34) and (35), are characterized by

12The �rst inequality guarantees ξ/γ in the condition (32) to be non negative. The second one guarantees the condition (32) to belong
to set of su�cient conditions ensuring coX > coL at a su�ciently ambitious target of stationary pollution stock. A proof for this argument
is available upon request.

13Note that the condition (32) trivially makes the conditon in (iii) of proposition 6 hold, therefore coX > coK for all target of steady state

stock of pollution E ∈ [0, Ẽ).
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6 SOCIAL PLANNER'S ALLOCATION

u′(cy,st )

v′(co,st+1)
= 1 +

γ − ξ
γ

z(Es
t )F

t+1,s
K (36)

cy,st + co,st + kst+1 +M s
t − z(Es

t−1)F
t,s − kst = 0 (37)

Es
t − (1− δ)Es

t−1 − ξz(Es
t−1)F

t,s + γM s
t = 0 (38)

z′(Et)F
t+1,s +

(1 +R)ηt
µt+1 − ηt+1(1 + ξ − δ)

= 0 (39)

u′(cy,st ) = µt = ηtγ = (1 +R)v′(co,st ) (40)

∀t ∈ N, where Es
−1 = E−1 and k

s
0 = k0 are given. This allocation is fully derived in Appendix A4.

The social planner's choice (cy,s, co,s, ks,M s, Es) at the steady state is characterized by

u′(cy,s)

v′(co,s)
= 1 +R (41)

z(Es)F s
K =

γR

γ − ξ
(42)

z′(Es)F s =
R + δ

ξ − γ
(43)

cy,s + co,s +M s = z(Es)F s (44)

δEs = ξz(Es)F s − γM s (45)

while the steady state competitive allocation (cy,c, co,c, kc,M c, Ec) is characterized by14

u′(cy,c)

v′(co,c)
= 1 + z(Ec)F c

K (46)

cy,c + kc +
F c
X

F c
K

= z(Ec)F c
L (47)

co,c = [1 + z(Ec)F c
K ] (kc +

F c
X

F c
K

) (48)

M c = 0 (49)

δEc − ξz(Ec)F c = 0 (50)

The social planner's steady state (cy,s, co,s, ks,M s, Es) di�ers from the competitive steady state
(cy,c, co,c, kc,M c, Ec). Indeed, this di�erence not only comes from the imperfect altruism in the
competitive OLG model compared to the social planner's Ramsey model, but also from the ability
of the social planner to internalize the negative e�ect of pollution on production. In this case the
competitive steady state allocation is a sub-optimal allocation.

14For convenience in denoting variables and functions, we use upper scripts �s� and �c� to denote variables and functions under the social
planner's allocation and pure competitive allocation, respectively.

13



7 IMPLEMENTATION OF THE SOCIAL PLANNER'S OPTIMAL ALLOCATION

7 Implementation of the social planner's optimal allocation

In this section, we introduce taxes on land rent and capital income as well as investment in mitigating
pollution to correct the ine�ciency of the competitive economy and obtain the social planner's
allocation. The mitigation is always set at the optimal choice of the social planner. The land rent
tax and capital income tax are designed such that the agent chooses the correct saving to achieve
the social planner's capital accumulation. These taxes and mitigation are balanced by the inter-
generational transfers.

Let T yt and T ot+1 be respectively a lump-sum tax (if negative) levied on agent t's income when
young and a lump-sum subsidy (if positive) to the same agent when old in period t + 1, along with
land rent tax rate τXt+1 and capital income tax rate τKt+1. The problem of the agent t is then

max
cyt ,kt+1,cot+1

u(cyt ) + v(cot+1)

subject to
cyt + kt+1 + pt ≤ z(Et−1)F

t
L + T yt

cot+1 ≤ [1 + (1− τKt+1)z(Et)F
t+1
K ]kt+1 + (1− τXt+1)z(Et)F

t+1
X + pt+1 + T ot+1

where, under the emission mitigation investment, Mt, chosen by the social planner,

Et = (1− δ)Et−1 + ξz(Et−1)F
t − γMt

The balanced budget constraint in each period t implies

T yt + T ot + τKt z(Et−1)F
t
Kkt + τXt z(Et−1)F

t
X = Mt

where the left-hand side is net tax revenue, the right-hand side is emission mitigation investment.
Under the policy (T yt , T

o
t+1, τ

K
t+1, τ

X
t+1,Mt), the competitive equilibrium is characterized , again, by

the Euler equation, the life-time budget constraints which are binding, the no-arbitrage condition,
and dynamics of pollution stock:

u′(cyt )

v′(cot+1)
= 1 + (1− τKt+1)z(Et)F

t+1
K

cyt + kt+1 + pt = z(Et−1)F
t
L + T yt

cot+1 = [1 + (1− τKt+1)z(Et)F
t+1
K ]kt+1 + (1− τXt+1)z(Et)F

t+1
X + pt+1 + T ot+1

[1 + (1− τKt+1)z(Et)F
t+1
K ]pt = (1− τXt+1)z(Et)F

t+1
X + pt+1

Et = (1− δ)Et−1 + ξz(Et−1)F
t − γMt

One di�culty in decentralizing the planner's allocation is how to determine the whole sequence
prices of land. These prices are linked together via the no-arbitrage conditions. In this way, the
price of land today depends on that in the future and vice versa. In the pure competitive economy,
it is necessary to assume that the price sequence of land is given, and an agent in any period t has
perfect foresight on the price of land in t+ 1. This price information a�ects the agent's decisions in
allocating his savings portfolio in terms of capital and land, and hence a�ects the capital accumulation
for production. In this section, we propose a policy under which the sequence of land prices coincides
with that of the pure competitive economy.
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Suppose that in some period T , the social planner starts to implement the optimal allocation{
(cy,st , co,st , k

s
t+1,M

s
t , E

s
t )
}+∞
t=T

given ksT = kT , E
s
T−1 = ET−1. At the time that the policy is �rst

introduced, the price of land under the pure competitive economy is pcT . This price is predetermined
between generations T and T−1. The price pcT links to pcT−1 via the no-arbitrage condition under the
pure competitive regime. Introducing policy (T yT , T

o
T+1, τ

k
T+1, τ

x
T+1,MT ) to generation T will a�ect

the land price in period T + 1, psT+1. We �rst identify the relationship between τKt+1 and τXt+1 for
all t ≥ T , under perfect foresight on the returns on land and capital, the price of land pst+1, under
the policy (T yt , T

o
t+1, τ

k
t+1, τ

x
t+1,Mt)t≥T , is also the price of land under pure competitive regime, i.e.

pst+1 = pct+1 ∀t ≥ T . The following lemma presents this relation.

Lemma 1. Under the policy (T yt , T
o
t+1, τ

K
t+1, τ

X
t+1,Mt)t≥T in decentralizing the social planner's allocation{

cy,st , co,st , k
s
t+1,M

s
t , E

s
t

}+∞
t=T

, in order of the sequence of land prices (pst+1)
+∞
t=T to coincide with the

sequence of land prices (pct+1)
+∞
t=T under the scenario of no policy intervention, then the following

relationship between τKt+1 and τXt+1 must hold for all t ≥ T , given pcT :

1− τXt+1 =
z(Ec

t )F
t+1,c
X − [z(Ec

t )F
t+1,c
K − (1− τKt+1)z(Es

t )F
t+1,s
K ]pct

z(Es
t )F

t+1,s
X

(51)

Proof. See Appendix A5.

The capital income tax and land rent tax introduced in lemma 1 have two opposite e�ects which
completely o�set each other, making (pst+1)

+∞
t=T coincide with (pct+1)

+∞
t=T .

The following proposition states the strategies of decentralizing the social planner's allocation.

Proposition 8. The social planner's optimal allocation from any period T ≥ 0 onward can be obtained
as a competitive outcome by following a period-by-period balanced budget tax and transfer policy and
mitigation: announcing in any period t ≥ T the policy instruments (T yt , T

o
t+1, τ

K
t+1, τ

X
t+1,Mt)t≥T :

τKt+1 =
ξ

γ
≡ τK∗

τXt+1 = 1− z(Ec
t )F

t+1,c
X − [z(Ec

t )F
t+1,c
K − (1− τK∗ )z(Es

t )F
t+1,s
K ]pt

z(Es
t )F

t+1,s
X

T yt = cy,st + kst+1 + pt − z(Es
t−1)F

t,s
L

T ot+1 = co,st+1 − [1 + (1− τK∗ )z(Es
t )F

t+1,s
K ](kst+1 + pt)

Mt = M s
t

given ksT = kT and Es
T−1 = ET−1, will be implemented. Note that in period T , the lump-sum transfer

to the old is T oT = M s
T − T

y
T , which guarantees the government budget in T to be balanced.

Proof. See Appendix A5.

Under the policy (T yt , T
o
t+1, τ

K
t+1, τ

X
t+1,Mt)t≥T introduced in proposition 8, the environmental exter-

nality and the imperfect altruism between generations are fully corrected during the entire transitional
phase. As a consequence, the social planner's optimal allocation is implemented.

Note that by construction, under the implementation, the allocation from period T + 1 onward,{
(cy,st , co,st , k

s
t+1,M

s
t , E

s
t )
}+∞
t=T+1

, is a Pareto optimum. In this implementation, the generation T −
1 may not be worse o� when the stock of pollution ET−1 is low and capital accumulation kT is
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9 APPENDIX

su�ciently high so that the labor income of an agent T is su�ciently high and the transfer T yT is
strictly greater than the mitigation M s

T . In this case the transfer to the agent T − 1, T oT will be
non-negative. The consumption when young and savings of generation T decrease but the welfare
of this generation does not necessarily decrease. That is because the positive e�ect of a lower stock
of pollution on productivity improves the return on capital and hence increases the consumption
when old, possibly o�setting the welfare loss from the decrease in consumption when young. These
results depend on the state of the economy, level of capital accumulation and environmental quality,
at the time of the implementation and responsiveness of damage function z(E) to the stock of
pollution E. If it is the case, and if the economy starts with initially low stock of pollution E−1 and
su�ciently high capital k0 then the timing for triggering implementation is important to avoid the
con�ict between the old generation at the time of triggering implementation and future generations.
Delaying implementation increases stock of pollution and may reduce capital. Hence the generation
T − 1 will be worse o� as they have to pay −T oT > 0 from their old-age income in order the economy
to obtain pollution mitigation M s

T .

8 Conclusion remarks

We set up an OLG economy with land as a �xed factor of production and an environmental exter-
nality to study the heterogenous long-run e�ects of alternative tax and mitigation policies on capital
accumulation and welfare. Four taxation schemes are examined: land rent, capital income, labor
income, and production taxation. The land rent taxation scheme leads to the highest steady state
capital accumulation and highest steady state consumption when young for any target of station-
ary stock of pollution. Given a relatively high e�ciency of mitigation technology compared to the
dirtiness of production and a su�ciently ambitious target of stationary stock of pollution, land rent
taxation also provides the highest steady state consumption when old, and hence the highest steady
state welfare of all the schemes. This result implies that land rent taxation could be an e�cient
instrument for combating climate change. In addition, we describe the period-by-period balanced
budget policy to decentralize the socially optimal allocation as a competitive outcome during the
entire transitional phase to the social planner's steady state allocation.

The paper could be extended in at least two ways. Firstly, the current paper solely considers the
model of homogenous agents, so it would be interesting to extend the model to incorporate the issue
of inequality. In other words, agents are heterogenous in land ownership and incomes, and hence
the land rent taxation may generate double dividends in combating climate change and reducing
inequality. Secondly, we could consider the directed technical change by introducing multiple sectors
of intermediate production which include clean and dirty sectors. The aggregate land rent tax may
be used along with the tax imposed on dirty sectors in order to subsidize clean innovations. This
may allow us to study the conditions and possibilities of avoiding a Green Paradox as mentioned in
Sinn (2008). In addition, although the paper provides interesting results in comparing the e�ects
of taxation schemes stated in propositions 5 and 6, it purely focuses on these e�ects at the steady
state. The analyses of these e�ects on capital accumulation, consumption and welfare during the
transition to the steady state would be challenging and promisingly interesting. These ideas are left
for further research.

9 Appendix

A0. Existence, uniqueness of the steady state, and convergence to the steady state

With the functional forms, F t = kαKt and U(cyt , c
o
t+1) = ln cyt + β ln cot+1 , the competitive equilibrium

of the economy is characterized by the following system of nonlinear equations:
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kt+1 −
β

1 + β
(1− τL)αLz(Et−1)k

αK
t + pt = 0 (52)

Et − (1− δ)Et−1 − (ξ − γ
∑
i

αiτ i)z(Et−1)k
αK
t = 0 (53)

pt+1 −
[
1 + (1− τK)αKz(Et)k

αK−1
t+1

]
pt + (1− τX)z(Et)αXk

αK
t+1 = 0 (54)

for given kt, Et−1, pt. This equilibrium follows a dynamics represented by a �rst-order di�erence
equation since the Jacobian matrix of the left-hand side of the system above with respect to kt+1, Et
and pt+1 is regular.15 That is to say,

(kt+1, Et, pt+1) = φ (kt, Et−1, pt) (55)

where φ is an one to one mapping from R3
+ onto itself. It is obvious that φ is invertible and both

φ and φ−1 are continuously di�erentiable. Hence, φ : R3
+ → R3

+ is called a C1 di�eomorphism (see
Galor 2011). The steady state is characterized by

k∗ =

[
β(1− τK)αK(1− τL)αLz(E∗)

(1 + β) [(1− τK)αK + (1− τX)αX ]

] 1
1−αK

δE∗
z(E∗)

= (ξ − γ
∑
i

αiτ i)kαK∗

p∗ =
(1− τX)αX
(1− τK)αK

k∗

Let substitute the �rst equation into the second equation and make a simple transformation, the
existence and uniqueness of the steady state is guaranteed by the existence and uniqueness of the
solution E∗ to following equation

z(E)
1

αK−1E =

ξ − γ
∑
i

αiτ i

δ

[
β(1− τK)αK(1− τL)αL

(1 + β) [(1− τK)αK + (1− τX)αX ]

] αK
1−αK

(56)

It is obvious that, for τK , τL, τX ∈ [0, 1), the right-hand side of (56) is bounded, while, from the
assumptions on z(E), the left-hand side is continuous and monotonically increasing in E and

lim
E→−∞

(
z(E)

1
αK−1E

)
= −∞ and lim

E→+∞

(
z(E)

1
αK−1E

)
= +∞

Therefore, there always exists a unique solution E∗ to equation (56), which implies that there
always exists a unique steady state.

Lets linearize the equation (55) in the vicinity of its steady state. The associated Jacobian matrix
evaluated at the steady state is

J∗ =


αK + 1−τX

1−τKαX
βαL(1−τL)

1+β
z′(E∗)k

αK
∗ −1

(ξ−γ
∑
i
αiτ i)(1+β)

(
αK+ 1−τX

1−τK
αX

)
βαL(1−τL) 1− δ + (ξ − γ

∑
i

αiτ i)z′(E∗)k
αK
∗ 0

(1+β)αX(1−τX)
−βαL(1−τL)

[
1 + (1−τX)αX

(1−τK)αK

]2
0 1 + (1−τK)αK+(1−τX)αX

β
1+β

(1−τL)αL


When the center eigenspace of the steady state (k∗, E∗, p∗) is empty �i.e. all eigenvalues of

15It is fairly straightforward to derive this Jacobian matrix and its determinant is 1.

17
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the Jacobian matrix J∗ are of modulus di�erent than 1� then (k∗, E∗, p∗) is call a hyperbolic �xed
point . Indeed, it is easy to �nd conditions under which the steady state is hyperbolic.16 When
it is hyperbolic, by applying the Stable Manifold Theorem,17 there exists a local stable manifold
W s
` (k∗, E∗, p∗). That is to say, for all initial conditions (k0, E−1, p0) ∈ W s

` (k∗, E∗, p∗) then

lim
n→+∞

φ{n} (k0, E−1, p0) = (k∗, E∗, p∗)

where φ{n}(k0, E−1, p0) is the n
th iteration over (k0, E−1, p0) under the mapping φ.

So there is room for us to study an economy whose initial conditions (k0, E−1, p0) ∈ W s
` (k∗, E∗, p∗)

�i.e. the economy will converge to its steady state.18

A1. Proofs of propositions 1 and 2

Proposition 1: In e�ect, from (24) and (25) we have

z(EX)
1

αK−1EX =
ξ − γτXαX

δ

[
βαLαK

(1 + β) [αK + (1− τX)αX ]

] αK
1−αK

≡ g(τX) (57)

Applying the implicit function theorem for (57) we have

∂EX
∂τX

=
(1− αK)z(EX)

2−αK
1−αK

(1− αK)z(EX)− z′(EX)EX
g′(τX) ; where sign

∂EX
∂τX

≡ sign g′(τX) (58)

We have g′(τX) =
(

βαLαK
(1+β)[αK+(1−τX)αX ]

) αk
1−αk αX

δ

[
αK

1−αK
ĝ(τX)− γ

]
and for all τX ∈ [0, 1),

sign g′(τX) ≡ sign

[
αK

1− αK
ĝ(τX)− γ

]
where ĝ(τX) =

ξ − γτXαX
αK + (1− τX)αX

(59)

We have ĝ′(τX) = ξ−γ(αK+αX)

[αK+(1−τX)αX ]2
αX > (=)(<) 0 ⇔ ξ

γ
> (=)(<)αK + αX .

(a) If ξ
γ
> αK + αX then ĝ′(τX) > 0, hence ∀τX ∈ [0, 1), ĝ(τX) < lim

τX→1−
ĝ(τX) = ξ−γαX

αK
, therefore

αK
1− αK

ĝ(τX)− γ < αK
1− αK

ξ − γαX
αK

− γ =
ξ − γ(1− αK + αX)

1− αK
< 0 (60)

because of the assumption ξ
γ
< 1− αK + αX . So, from (58), (59), and (60) we have ∂EX

∂τX
< 0.

(b) If ξ
γ

= αK + αX then ĝ′(τX) = 0, hence ĝ(τX) = γ(αK+αX)−γτXαX
αK+(1−τX)αX

= γ, therefore

αK
1− αK

ĝ(τX)− γ = γ

(
αK

1− αK
− 1

)
< 0 since αK <

1

2
(61)

So, from (58), (59), and (61) we have ∂EX
∂τX

< 0.

(c) If ξ
γ
< αK + αX then ĝ′(τX) < 0, hence ∀τX ∈ [0, 1], ĝ(τX) < ĝ(0) = ξ

αK+αX
< γ, therefore

16For instance, we choose the tax policy such that ξ − γ
∑
i
αiτ i = 0, then one of the eigenvalues is λ1 = 1 − δ ∈ (0, 1) and

two other real eigenvalues are λ2(3) =
a+b±

√
(a−b)2+4c

2
, where a = αK + 1−τX

1−τK αX , b = 1 + 1+β
β

(1−τK)αK+(1−τX )αX
(1−τL)αL

, and

c =
(1+β)αX (1−τX )

βαL(1−τL)

[
1 +

(1−τX )αX
(1−τK)αK

]2
which all depend on the parameters of the model. That is to say, there is freedom for us to

choose suitable parameters to guarantee λ2(3) 6= ±1.
17For the Stable Manifold Theorem, see Galor (2011).
18The global stable manifold W s(k∗, E∗, p∗) can be obtained by the union of all backward iteration under the mapping φ over the local

stable manifold, i.e. W s(k∗, E∗, p∗) = ∪n∈N{φ−{n}(W s
` (k∗, E∗, p∗))}.

18
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αK
1− αK

ĝ(τX)− γ < γ

(
αK

1− αK
− 1

)
< 0 since αK <

1

2
(62)

So, from (58), (59), and (62) we have ∂EX
∂τX

< 0.

We know that kX =
[

βαLαKz(EX)
(1+β)[αK+(1−τX)αX ]

] 1
1−αK , where as in (57), EX can be represented as a

function of τX only, then ∀τX ∈ [0, 1), it holds

∂kX
∂τX

=

[
βαLαKz(EX)

(1 + β) [αK + (1− τX)αX ]

] 1
1−αK

z′(EX)
z(EX)

∂EX
∂τX

[
αK + (1− τX)αX

]
+ αX

(1− αK) [αK + (1− τX)αX ]
> 0 (63)

Proposition 2: From (26) and (27) we have

z(EK)
1

αK−1EK =
ξ − γτKαK

δ

(
βαLαK(1− τK)

(1 + β)[αX + αK(1− τK)]

) αK
1−αK

≡ g̃(τK) (64)

Applying the implicit function theorem for (64) with respect to EK and τK , we have (note that
it is straightforward to derive −∞ < g̃′(τK) < 0),

∂EK
∂τK

=
(1− αK)z(EK)

2−αK
1−αK g̃′(τK)

(1− αK)z(EK)− z′(EK)EK
< 0 (65)

Lets examine the impact of capital income taxation on capital accumulation. From (26)

kK =

[
βαLαK(1− τK)

(1 + β)[αX + (1− τK)αK ]
z(EK)

] 1
1−αK

(66)

∂kK
∂τK

=

[
βαLαK(1− τK)z(EK)

(1 + β)[αX + (1− τK)αK ]

] 1
1−αK

[
z′(EK)
z(EK)

∂EK
∂τK
− 1

1−τK

] [
αX + (1− τK)αK

]
+ αK

(1− αK) [αX + (1− τK)αK ]
(67)

From (67) we �nd that in contrast to the e�ect of land rent taxation on capital accumulation
(which is stated in proposition 1), the e�ect of capital income taxation is ambiguous and the di-
rection of this e�ect seems to depend on the level of the tax rate on capital income τ k. Since
−∞ < g̃′(τK) < 0 then ∂EK/∂τ

K as determined in (65) is always bounded. Hence, the numerator[
z′(EK)
z(EK)

∂EK
∂τK
− 1

1−τK

] [
αX + (1− τK)αK

]
+ αK , which determines the sign of ∂kK/∂τ

K , on the right

hand side of (67) may be positive when τK is su�ciently low (depending on the responsiveness of
z(EK) to the change in EK), and it approaches −∞ when τK → 1−.

A2. Proof of proposition 5:

(i) We compare (24) to (26) by equalizing the stock of pollution in both equations. So, we have

kK
kX

=

[
αK + αX(1− τX)

αK + αX(1− τK)−1

] 1
1−αK

(68)

Since τX , τK ∈ (0, 1) then it is obvious that kK/kX < 1, i.e. kK < kX . Similarly, we derive

19
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kP
kX

=

[
(1− τP )

[
αK + (1− τX)αX

]
αK + αX

] 1
1−αK

(69)

Since τX , τP ∈ (0, 1) then it is obvious that kP/kX < 1, i.e. kP < kX .

(ii) We have

kP
kL

=

(
1− τP

1− τL

) 1
1−αK

(70)

Suppose that kP ≤ kL then, from the last equation, τP ≥ τL. Since EL = EP then it holds

(ξ − γτLαL)kαKL = (ξ − γτPαP )kαKP =
δE

z(E)

But for kP ≤ kL and τP ≥ τL we obtain (ξ − γτLαL)kαKL > (ξ − γτPαP )kαKP , which contradicts
the last equality. Therefore, kP > kL.

(iii) We have

kL
kK

=

[
1− τL

1− τK
αX + (1− τK)αK

αX + αK

] 1
1−αK

(71)

Hence, kL > (=)(<) kK is equivalent to

1− τL

1− τK
αX + (1− τK)αK

αX + αK
> (=)(<) 1 ⇔ τL

[
1 + (1− τK)

αK
αX

]
< (=)(>) τK

(a) First, we show that if 1 − τK = αX(αL−αK)

α2
K

then kK = kL. Suppose a contradiction that

kK 6= kL. Without lost of generality, we assume that kK < kL. Hence, τL > αK
αL
τK since (ξ −

γτLαL)kαKL = (ξ − γτKαK)kαKK . That is to say

τL >
αK
αL

[
1− αX(αL − αK)

α2
K

]
(72)

So from (71), (72), and given that 1− τK = αX(αL−αK)

α2
K

, we have

(
kL
kK

)1−αK
= (1− τL)

αX(1− τK)−1 + αK
αX + αK

<

(
1− αK

αL

[
1− αX(αL − αK)

α2
K

]) α2
K

αL−αK
+ αK

αX + αK
= 1

i.e. kL < kK , which contradicts the initial assumption that kL > kK . An analogous logic will applied
in the case in which we assume initially that kK > kL. Therefore, it holds kL = kK .

(b) Second, we show that if 1 − τK > αX(αL−αK)

α2
K

then kK > kL. Indeed, suppose that kK ≤ kL

then τL ≥ αK
αL
τK , and from (71), it would hold

ψ(τK) =
1− αK

αL
τK

1− τK
αX + (1− τK)αK

αX + αK
≥ 1− τL

1− τK
αX + (1− τK)αK

αX + αK
≥ 1

We will show a contradiction that ψ(τK) < 1. Indeed,

ψ′(τK) = −αK
αL

αX(1− τK)−1 + αK
αX + αK

+

(
1− αK

αL
τK
)

αX
(αX + αK)(1− τK)2
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and, by simple transformation, sign ψ′(τK) ≡ sign
[
αX(αL−αK)

α2
K

− (1− τK)2
]
. So for all τK ∈ (0, 1),

ψ′(τK) > (=)(<) 0 ⇐⇒ 1− τK < (=)(>)

√
αX(αL − αK)

αK

Hence the function ψ(τK) get unique minimum at τK = 1 −
√
αX(αL−αK)

αK
∈ (0, 1 − αX(αL−αK)

α2
K

).

In addition, we have ψ(0) = ψ
(

1− αX(αL−αK)

α2
K

)
= 1. Therefore, for all τK ∈ (0, 1 − αX(αL−αK)

α2
K

),

i.e. 1 − τK > αX(αL−αK)

α2
K

, we have ψ(τK) < 1 which contradicts the result ψ(τK) ≥ 1. Hence, if

1− τK > αX(αL−αK)

α2
K

then kK > kL.

Finally, similar to the previous proof, we have, if 1− τK < αX(αL−αK)

α2
K

then kK < kL.

(iv) When both capital taxation and production taxation schemes leads to some given steady
state stock of pollution, it holds

δE

z(E)
= (ξ − γτP )kαKP = (ξ − γαKτK)kαKK (73)

On the other hand we have from (68) and (69) that(
kK
kP

)1−αK
=

(1− τK)(αK + αX)

(1− τP )[αK(1− τK) + αX ]
(74)

Suppose that kK ≥ kP then from (73) we have

τP ≤ αKτ
K (75)

From (74) we have (1−τK)(αK+αX)
(1−τP )[αK(1−τK)+αX ]

≥ 1. In fact, from (75) we have

(1− τK)(αK + αX)

(1− τP )[αK(1− τK) + αX ]
≤ (1− τK)(αK + αX)

(1− αKτK)[αK(1− τK) + αX ]

We will complete the proof with a contradiction through proving that

(1− τK)(αK + αX)

(1− αKτK)[αK(1− τK) + αX ]
< 1

Indeed, the last inequality is equivalent to

(1− τK)(αK + αX) < (1− αKτK)[αK(1− τK) + αX ] ⇐⇒ 1− τK <
αX(1− αK)

α2
K

which always holds because τK ∈ (0, 1) and αX ≥
α2
K

1−αK
. Therefore, we have kK < kP .

A3. Proof of propositions 6 and 7

Proposition 6: (i) It is fairly straightforward from logarithm utility function that cyX > max{cyP , c
y
K , c

y
L}

since, from proposition 5, kX > max{kK , kP , kL}.

(ii) Under land rent and capital income taxation, the stationary land prices, respectively, are pX =
(1−τX)FXX

FXK
and pK =

FKX
(1−τK)FKK

. The consumption when old under these schemes are
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coX =
[
1 + z(E)FX

K

] [
kX +

(1− τX)FX
X

FX
K

]
and coK =

[
1 + (1− τK)z(E)FK

K

] [
kK +

FK
X

(1− τK)FK
K

]
With the logarithm utility function, the saving rate is constant and the savings under these

schemes are β
1+β

z(E)F x
L and β

1+β
z(E)F k

L . We have

kX +
(1− τX)FX

X

FX
K

=
β

1 + β
z(E)FX

L >
β

1 + β
z(E)FK

L = kK +
FK
X

(1− τK)FK
K

We complete the proof by showing that

FX
K kX + (1− τX)FX

X ≥ (1− τK)FK
K kK + FK

X (76)

⇔
(
kX
kK

)αK
≥ (1− τK)αK + αX
αK + (1− τX)αX

=
αK + αX − τKαK
αK + αX − τXαX

For a given target of steady state stock of pollution E ∈ [0, Ẽ), we have

δE

z(E)
= (ξ − γτXαX)kαKX = (ξ − γτKαK)kαKK =⇒

(
kX
kK

)αK
=
ξ − γτKαK
ξ − γτXαX

=
ξ/γ − τKαK
ξ/γ − τXαX

Since kX > kK then ξ/γ − τKαK > ξ/γ − τXαX > 0. Hence, it is straightforward that, when

ξ/γ ≤ αX + αK then ξ/γ−τKαK
ξ/γ−τXαX

≥ αK+αX−τKαK
αK+αX−τXαX

, i.e. (76) holds. Therefore, we have coX > coK .

(iii) We have

cyK =
z(E)αLk

αK
K

1 + β
and cyP =

(1− τP )z(E)αLk
αK
P

1 + β
, then cyP ≥ cyK ⇔ 1− τP ≥

(
kK
kP

)αK
By substituting kK/kP determined in (74) into the last inequality we have

1− τP ≥
[

(1− τK)(αK + αX)

(1− τP )[αK(1− τK) + αX ]

] αK
1−αK

⇔ τP ≤ 1−
[

αK + αX
αK + αX(1− τK)−1

]αK
,

which holds by construction.
Similarly, we have

coK =
βαLz(E)kαKK

[
1 + (1− τK)αKz(E)kαK−1K

]
1 + β

coP =
β(1− τP )αLz(E)kαKP

[
1 + (1− τP )αKz(E)kαK−1P

]
1 + β

In order to prove coP > coK , we prove �rst that

(1− τP )kαK−1P > (1− τK)kαK−1K ⇔
(
kK
kP

)1−αK
>

1− τK

1− τP

Substitute kK/kP determined in (74) into the last inequality we have αK+αX
αK(1−τK)+αX

> 1, which

trivially holds because τK ∈ (0, 1].
We also have
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coP
coK

=
(1− τP )kαKP

kαKK
× 1 + (1− τP )αKz(E)kαK−1P

1 + (1− τK)αKz(E)kαK−1K

where the �rst fraction (1−τP )kαKP /kαKK = cyP/c
y
K ≥ 1 as proved above. We complete by proving that

the second fraction in the last equation is strictly greater than 1. That is straightforward because
from the proof above we have (1− τP )kαK−1P > (1− τK)kαK−1K . Therefore, coP > coK .

(iv) We have

coX
coP

=
kαKX

(1− τP )kαKP
× 1 + αKz(E)kαK−1X

1 + (1− τP )αKz(E)kαK−1P

The second fraction in the right hand side of the last equation satis�es

1 + αKz(E)kαK−1X

1 + (1− τP )αKz(E)kαK−1P

>
kαK−1X

(1− τP )kαK−1P

because, from (69) we have

αKz(E)kαK−1X

(1− τP )αKz(E)kαK−1P

=
kαK−1X

(1− τP )kαK−1P

=
αK + (1− τX)αX

αK + αX
< 1

Hence we have

coX
coP

>
kαKX

(1− τP )kαKP
× kαK−1X

(1− τP )kαK−1P

=

(
1

1− τP

) 1
1−αK

[
αK + (1− τX)αX

αK + αX

] 1−2αK
1−αK

(77)

By the condition τP ≥ 1−
[
αK+(1−τX)αX

αK+αX

]1−2αK
, we have 1

1−τp

[
αK+(1−τX)αX

αK+αX

]1−2αK
≥ 1. Therefore,

coX/c
o
P > 1, i.e. coX > coP .

(v) The proof for this statement is quite similar to the proof in statement (iv) above.

Proposition 7: We have, under condition

ξ

γ
≤ (αK + αX)

[
1−

(
1− 2αK
1− αL

) 1
2αK

]
(78)

that coX > coK holds for any target of steady state stock of pollution E ∈ [0, Ẽ). This property is

straightforward from the statement (ii) in proposition 6. We next prove that there exists ambitious

targets on steady state stock of pollution E under which coX > max {coP , coL}. We now consider the

�rst case coX > coP . From statement (iii) in proposition 6, we have coX > coP if it holds

τP ≥ 1−
[
αK + (1− τX)αX

αK + αX

]1−2αK
We consider at the extreme target, say the government set E = 0. At this target, the production

tax rate τP = ξ
γ
, land rent tax rate τX = ξ

γαX
, and the condition above boils down to

ξ

γ
≥ 1−

[
1− 1

αK + αX

ξ

γ

]1−2αK
⇐⇒ 1− ξ

γ
−
[
1− 1

αK + αX

ξ

γ

]1−2αK
≤ 0
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Lets consider following function 4(y) = 1− y −
[
1− 1

αK+αX
y
]1−2αK

for y ∈ [0, ξ
γ
]. We have

4(0) = 0 and 4′(y) = −1 +
1− 2αK
αK + αX

[
1− 1

αK + αX
y

]−2αK
Note that 1− αL = αK + αX , hence,

4′(y) < 0 ⇐⇒ y ≤ (αK + αX)

[
1−

(
1− 2αK
1− αL

) 1
2αK

]
This implies that, under (78), 4′(y) < 0 for all y ∈ (0, ξ

γ
], and hence 4(y) < 0 for all y ∈ (0, ξ

γ
] since

4(0) = 0. That is to say, under (78) and at the extreme target E = 0, it holds coX > coP .
We know from propositions 1 and 4 that E = EX(τX) = EP (τP ), where E ′X(τX) < 0, E ′P (τP ) < 0.

In addition, we have from (77) that

coX
coP

>

(
1

1− τP

) 1
1−αK

[
αK + (1− τX)αX

αK + αX

] 1−2αK
1−αK

The right hand side of the last inequality is a continuous function of the steady state stock of

pollution E ∈ [0, Ẽ] and can be rewritten by

Υ (E) =

[
1

1− E−1P (E)

] 1
1−αK

[
αK + (1− E−1X (E))αX

αK + αX

] 1−2αK
1−αK

where Υ (0) > 1.

Hence, there always exists an ε > 0 such that Υ (E) > 1, i.e. coX > coP , for all E ∈ [0, ε].

Similarly, we can prove the existence of ambitious targets on steady state stock of pollution

E ∈ [0, ε′] such that coX > coL.

A4. Social planner's optimal allocation

The Lagrangian is

L =
+∞∑
t=0

u(cyt ) + (1 +R)v(cot )

(1 +R)t
+

+∞∑
t=0

µt [z(Et−1)F
t + kt − cyt − cot − kt+1 −Mt]

(1 +R)t

+
+∞∑
t=0

ηt [Et − (1− δ)Et−1 − ξz(Et−1)F
t + γMt]

(1 +R)t

The FOCs are

∂L
∂cyt

=
u′(cyt )

(1 +R)t
− µt

(1 +R)t
= 0

∂L
∂cot

=
v′(cot )

(1 +R)t−1
− µt

(1 +R)t
= 0

∂L
∂kt+1

= − µt
(1 +R)t

+
µt+1

(1 +R)t+1

[
1 + z(Et)F

t+1
K

]
− ηt+1

(1 +R)t+1
ξz(Et)F

t+1
K = 0

∂L
∂Mt

= − µt
(1 +R)t

+
ηtγ

(1 +R)t
= 0
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∂L
∂Et

=
µt+1 − ηt+1ξ

(1 +R)t+1
z′(Et)F

t+1 +
ηt

(1 +R)t
− ηt+1(1− δ)

(1 +R)t+1
= 0

z(Et−1)F
t + kt − cyt − cot − kt+1 −Mt = 0

Et − (1− δ)Et−1 − ξz(Et−1)F
t + γMt = 0

At the steady state we have

u′(cy) = µ = ηγ = (1 +R)v′(co)

z(E)FK =
γR

γ − ξ

z′(E)F =
R + δ

ξ − γ

cy + co +M = z(E)F

δE = ξz(E)F − γM

A5. Proofs of Lemma 1 and Proposition 8

Lemma 1: When t = T , without any policy intervention the no-arbitrage condition is

[1 + z(Ec
T )F T+1,c

K ]pcT = z(Ec
T )F T+1,c

X + pcT+1 (79)

With policy intervention, the corresponding no-arbitrage condition becomes

[1 + (1− τKT+1)z(Es
T )F T+1,s

K ]psT = (1− τXT+1)z(Es
T )F T+1,s

X + psT+1 (80)

Since psT = pcT then for psT+1 = pcT+1, it must hold from (79) and (80) that

1− τXT+1 =
z(Ec

T )F T+1,c
X − [z(Ec

T )F T+1,c
K − (1− τKT+1)z(Es

T )F T+1,s
K ]pcT

z(Es
T )F T+1,s

X

By the induction method, we argue that the condition (51) holds for all t ≥ T .

Proposition 8: Indeed, in period T , by choosing MT = M s
T , we have ET = Es

T . Under the policy
(T yT , T

o
T+1, τ

K
∗ , τ

X
T+1,M

s
T ), the Euler equation is

u′(z(ET−1)F
T
L + T yt − kT+1 − pT )

v′([1 + γ−ξ
γ
z(Es

T )F T+1
K ](kT+1 + pT ) + T oT+1)

= 1 +
γ − ξ
γ

z(Es
T )F T+1

K (81)

Note that, by construction, in period T we have F T,s
L = F T

L and Es
T−1 = ET−1. It is obvious that

if kT+1 = ksT+1 then by construction, cyT = cy,sT and coT+1 = co,sT+1 and hence the Euler equation (81)
obviously holds because it exactly coincides with the Euler equation (36) under the allocation of the
social planner. We now prove that, under the policy (T yT , T

o
T+1, τ

K
∗ , τ

X
T+1,M

s
T ), the optimal choice

of agent's savings in terms of capital kT+1 = ksT+1 is unique. In e�ect, suppose that there existed
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k̂T+1 6= ksT+1 to be also optimal choice of capital saving. Without loss of generality, suppose that

k̂T+1 > ksT+1, hence the corresponding consumption ĉyT and ĉoT+1 will be

ĉyT = z(Es
T−1)F

T,s
L + T yT − k̂T+1 − pT < cy,sT

ĉoT+1 =
[
1 + (1− τK∗ )z(Es

T−1)F̂
T+1
K

]
k̂T+1 + (1− τXT+1)z(Es

T−1)F̂
T+1
X + pT+1 > ĉo,sT+1

Therefore,

u′(ĉyT )

v′(ĉoT+1)
>

u′(cyT )

v′(coT+1)
= 1 +

γ − ξ
γ

z(Es
T )F T+1,s

K > 1 +
γ − ξ
γ

z(Es
T )F̂ T+1

K

i.e. the Euler equation is no longer satis�ed, contradicting (ĉyT , k̂T+1, ĉ
o
T+1) is the optimal choice of the

agent T . So (cy,sT , ksT+1, c
o,s
s ) is the unique optimal choice of a agent under the policy (T yT , T

o
T+1, τ

K
∗ , τ

X
T+1,M

s
T ).

We next prove that, from period T + 1 onward, the policy described in proposition 8 is period-
and-period budget balanced and will implement the social planner's allocation. Without loss of
generality, we consider the budget constraint and allocation in period T + 1. Under the policy
(T yT , T

o
T+1, τ

k
∗ , τ

x
T+1,M

s
T ) applied for generation T , we have kT+1 = ksT+1 and ET = Es

T are given
for the generation T + 1. Therefore, the balanced government budget constraint under the policy
(T yT+1, T

o
T+2, τ

K
∗ , τ

X
T+2,M

s
T+1), applied for the generation T + 1, requires that it holds

T yT+1 + T ot+1 +M s
T+1 = τK∗ z(Es

T )F T+1,s
K ksT+1 + τXT+1z(Es

T )F T+1,s
X

Using the no arbitrage condition, the last equation is equivalent to

cy,sT+1 + ksT+2 + pT+1 − z(Es
T )F T+1,s

L + co,sT+1 − [1 + (1− τK∗ )z(Es
T )F T+1,s

K ](kst+1 + pt) +M s
T+1

= τK∗ z(Es
T )F T+1,s

K ksT+1 + z(Es
T )F T+1,s

X − [1 + (1− τK∗ )z(Es
T )F T+1,s

K ]pT + pT+1

which boils down to

cy,sT+1 + ksT+2 + co,sT+1 +M s
T+1 = z(Es

T )F T+1 + ksT+1

i.e., the feasibility constraint of the social planner.
Similarly to the proof about optimal choice of generation T above, we also prove that the optimal

choice of generation T + 1 under the policy (T yT+1, T
o
T+2, τ

K
∗ , τ

X
T+2,M

s
T+1) is (cyT+1, kT+2, c

o
T+2). This

argument can be induced for all t ≥ T + 1.

A6. Discussions about relaxing assumptions

In this section, we discuss about relaxing two basic assumptions of the model: (i) the perfect com-
petition in �nal good sector and (ii) the constant returns to scale of �nal good sector production
function over its factors of production.

(i) For the �rst assumption, we can relax it by considering the case of monopoly competition in
the �nal good sector without changing the main quantitative results of the model. Indeed, we are
working on an aggregate private-owned economy with representative households. All in all, in such
an economy, the returns on factors of production and monopoly pro�ts belong to households. That
is to say, the capital accumulation and its e�ect on environment through production does not depend
on the type of competition in the �nal good sector.

(ii) For the second assumption, we relax in the direction of increasing returns to scale. A sizable
literature in the long run economic growth theory adopts this property of production which was pio-
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neered by Romer (1986). We argue that adopting increasing returns to scale property for production
function will not change the main qualitative results of our paper, particularly we focus on the long
run e�ects of di�erent taxation schemes on the stationary stock of pollution and on capital accumu-
lation under a given target of stationary stock of pollution. We follow Romer (1986) in modifying
our production function, guaranteeing its increasing returns to scale property, as follows

F̄ (Et−1, Kt, L,X) = z̄(Et−1, Kt)F (Kt, L,X)

where Kt has a positive e�ect on the total factor productivity z̄(Et−1, Kt) �i.e. z̄K(E,K) > 0
�while, as in the benchmark model, z̄E(E,K) < 0; F (Kt, L,X) exhibits constant returns to
scale over the factors of production. Under this setup with the logarithmic utility function and
F (Kt, L,X) = KαK

t LαLXαX as in the benchmark model, the steady state of the economy (k∗, E∗, p∗)
is characterized by the following system of equations

k∗ −
β

1 + β
(1− τL)αLz̄(E∗, k∗)k

αK
∗ + p∗ = 0

δE∗ − (ξ − γ
∑
i

αiτ i)z̄(E∗, k∗)k
αK
∗ = 0

p∗ =
(1− τX)αX
(1− τK)αK

k∗

For a purpose of exposition, we assign z̄(E, k) = z(E)kθ where z(E) is de�ned as in the benchmark
model and θ > 0. We will show that the main results derived from this setup are similar to those in
the benchmark model. Indeed, under this setup, the steady state is determined through solving the
following equation, which is modi�ed from equation (56) by the factor θ,

z(E)
1

αK+θ−1E =

ξ − γ
∑
i

αiτ i

δ

[
β(1− τK)αK(1− τL)αL

(1 + β) [(1− τK)αK + (1− τX)αX ]

] αK+θ

1−αK−θ

Similar to the benchmark model, it is straightforward to show the existence and uniqueness of
the steady state since the right-hand side of the last equation is bounded while the left-hand side is
continuous and monotonically increasing in E, spreading from −∞ to +∞.

Under the condition θ+αK < 1/2,19 we can show that under the land rent taxation scheme only,
it holds ∂EX/∂τ

X < 0 and ∂kX/∂τ
X > 0. The proofs for these statements are similar to those which

are done in Appendix A1 for proposition 1. Other properties stated in propositions 2, 3, and 4 hold
under this setup and the proofs for these properties follow the proof which is done for proposition 2
(see Appendix A1). This extended model also allows us to compare the long run e�ects of di�erent
taxation schemes on stationary stock of pollution and on capital accumulation as in the benchmark
model. Interestingly, the quantitative results obtained in this extended model are consistent with
those in the benchmark model. Indeed, for a given target of stationary stock of pollution, we can
derive capital ratios kK/kX , kP/kX , kP/kL, and kL/kK as follows

kK
kX

=

(
αK + αX(1− τX)

αK + αX(1− τK)−1

) 1
1−αK−θ

kP
kX

=

(
(1− τP )

[
αK + (1− τX)αX

]
αK + αX

) 1
1−αK−θ

19This is just a modi�ed condition from the condition αK < 1/2 in the benchmark model (see proposition 1). This condition implies
that the marginal e�ect of capital accumulation on total factor productivity decreases rather quickly.
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kP
kL

=

(
1− τP

1− τL

) 1
1−αK−θ

kL
kK

=

(
1− τL

1− τK
αX + (1− τK)αK

αX + αK

) 1
1−αK−θ

Interestingly, these equations are respectively similar to equations (68), (69), (70), and (71) except
the exponential factors which are independent in comparing these ratios with 1 as long as αK+θ < 1.
Therefore, the results stated in proposition 5 hold in this extended model.

These results allow us to compare consumption and hence welfare under these taxation schemes.
Similar to the benchmark model, for a given target of stationary stock of pollution E ∈ (0, Ẽ), the
level of consumption when young is highest under land rent taxation scheme because this scheme
leads to the highest capital accumulation level, and hence highest disposable labor income, while the
saving rate under logarithmic preference is constant. The consumption when old depends on saving
rate and returns to saving. In the benchmark model, we characterize conditions under which the
consumption when old under land rent taxation scheme is higher than that under other schemes.
With the positive externality of capital accumulation on total factor productivity in this extended
model, this result would be enhanced because the land rent taxation scheme leads to the higher
capital accumulation than other schemes. Thanks to the increasing returns to scale property of �nal
good production function, the higher capital accumulation under the land rent taxation scheme is
transmitted into higher consumption when old.
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