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Abstract 
 
Recent work on the effects of currency unions (CUs) on trade stresses the importance of using 
many countries and years in order to obtain reliable estimates. However, for large samples, 
computational issues limit choice of estimator, leaving an important methodological gap. To 
address this gap, we unveil an iterative PPML estimator which flexibly accounts for multilateral 
resistance, pair-specific heterogeneity, and correlated errors across countries and time. When 
applied to a comprehensive sample with more than 200 countries trading over 65 years, these 
innovations flip the conclusions of an otherwise rigorously-specified linear model. Our 
estimates for both the overall CU effect and the Euro effect specifically are economically small 
and statistically insignificant. The effect of non-Euro CUs, however, is large and significant. 
Notably, linear and PPML estimates of the Euro effect increasingly diverge as the sample size 
grows. 
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1 Introduction and Motivation
To us, a plausible methodology to estimate the currency union
effect on trade involves panel estimation with dyadic fixed effects.
We [. . . ] await computational advances to be able to estimate the
Poisson analogs.(Glick and Rose, 2016, p. 86)

Writing at the beginning of a transformative period in the empirical study of international

trade, Rose (2000) reported the stunning finding that sharing a common currency more than

triples trade between countries. While this estimate was regarded as puzzlingly high at the

time, it succeeded in stimulating a vibrant and ongoing empirical literature investigating the

trade-creating effects of currency unions (CUs), garnering over 2,800 citations (and counting)

since its original publication. This literature has notably included frequent re-examinations

of the original evidence by Rose himself—such as Glick and Rose (2002, 2016)—as well as

fervent interest in whether the European Monetary Union (EMU) in particular, as the largest

CU to date, might have had similarly remarkable effects.1

Parallel to this literature, the past two decades have seen the development and wide adop-

tion of many new econometric best practices for consistently identifying the determinants of

international trade. These have most notably included the use of Poisson Pseudo-maximum

Likelihood (PPML) estimation to address issues related to heteroscedasticity and zeroes

(Santos Silva and Tenreyro, 2006), time-varying exporter and importer fixed effects to ac-

count for changes in multilateral resistance (Feenstra, 2004; Baldwin and Taglioni, 2007),

and time-invariant pair fixed effects to absorb unobservable barriers to trade (Baier and

Bergstrand, 2007). Aiding these developments, empirical researchers working in trade have

also benefited from a new-found consensus on the theoretical underpinnings of the gravity

equation (Arkolakis, Costinot, and Rodríguez-Clare, 2012) as well as recent computational
1Along with Glick and Rose (2002, 2016), some of Rose’s other work in this area includes Rose (2001),

Rose (2002), and Rose (2017). Contributions by Persson (2001), Nitsch (2002), Levy-Yeyati (2003), Barro
and Tenreyro (2007), and de Sousa (2012) are examples of reactions to Rose’s initial finding. Finally,
Micco, Stein, and Ordonez (2003), Baldwin and Taglioni (2007), Berger and Nitsch (2008), Santos Silva and
Tenreyro (2010a), Eicher and Henn (2011), Olivero and Yotov (2012) and Mika and Zymek (2016) specifically
investigate the effect of the EMU. Santos Silva and Tenreyro (2010a) and Rose (2017) survey each of these
literatures.
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advances which permit swift estimation of linear models with a large number of fixed effects

(Carneiro, Guimarães, and Portugal, 2012; Correia, 2016).

Reassuringly, as these new methods have filtered into the literature on currency unions,

they have led to more reasonable and reliable estimates. In their latest installment, which em-

phasizes the use of time-varying exporter and importer fixed effects as well as time-invariant

pair fixed effects, Glick and Rose (2016) find—under their most rigorous specification—that

CUs generally increase trade by 40%, that CU entry and exit have symmetric effects on

trade, and that the EMU—which could not be included in earlier studies—has promoted

trade more than other CUs.

Doing their due diligence, Glick and Rose (2016) also experiment with PPML estimation

with two-way (exporter-time and importer-time) fixed effects.2 However, as captured in

the opening quote, they are unable to obtain estimates for one particularly important and

desirable specification: the case of a PPML model with a full set of fixed effects (i.e., also

including pair fixed effects).3 As they rightly point out, two-way estimates without pair fixed

effects are generally less reliable, as they do not address the potential endogeneity of CUs.

Thus, in this paper, we pick up where Glick and Rose (2016) leave off. The main technical

challenge we overcome is Glick and Rose (2016)’s preference for as large a sample as possible,

covering trade between more than 200 countries over 65 years and therefore necessitating

the use of more than 50,000 fixed effects. Working with the same data, we describe and

implement an iterative PPML algorithm which specifically addresses the computational bur-

den of the three different types of high-dimensional fixed effects (“HDFEs”) that need to be
2Glick and Rose (2016) include these results in an earlier working paper available online (Glick and Rose,

2015). They still estimate a generally positive “additional effect” for the EMU versus other CUs, but find
the overall CU effect disappears over time, echoing an earlier finding by de Sousa (2012).

3Even before Glick and Rose (2016), computational challenges with PPML have been quietly simmering
for some time. For example, Bratti, De Benedictis, and Santoni (2012) study the impact of immigrants on
trade and note that “the very high number of fixed effects causes serious numerical instability to the PPML
estimator [...] which failed to reach convergence.” Henn and McDonald (2014) find PPML “impracticable
[because] convergence of PPML is usually not achieved with fixed effects of a dimensionality as high as
ours.” And in their services trade handbook, Sauve and Roy (2016) explain that “[u]nfortunately, PPML
estimation with several high-dimensional fixed effects led to non-convergence [...] even with the application
of different work-around strategies suggested in the recent literature.” Dutt, Santacreu, and Traca (2014),
Kareem (2014), and Magerman, Studnicka, and Van Hove (2016) share similar frustrations.
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computed to obtain unbiased, theory-consistent estimates.4 In addition, taking advice from

Cameron, Gelbach, and Miller (2011) and Egger and Tarlea (2015), we also use standard

errors which are clustered on all possible dimensions of the panel—here, exporter, importer,

and time—and similarly show how such “multi-way” clustering techniques may be adapted

to the HDFE PPML context.

These two methodological changes—changing the underlying estimator and method of

clustering—lead to dramatic reversals in what we would otherwise consider the current

benchmark estimates from the literature. Unlike the vast majority of studies, we do not

find that the average effect of CUs on trade is statistically significant. This is for two main

reasons. First, multi-way clustering generally leads to more conservative inferences of all

estimates. Using standard, “robust” error corrections, for example, the overall CU effect is

positive and measured with high precision. Second, the implications of switching from OLS

to PPML are especially pronounced for our estimates of the EMU effect. In fact, for all CUs

other than the EMU, we find (as much of the literature had until more recently) the effect

of sharing a currency has been very large and highly significant, increasing trade by more

than 100%. Meanwhile, despite this strong precedent, the effect for the EMU is essentially

zero, completely flipping the conclusions of Glick and Rose (2016).

We are not the first researchers to document either a small EMU effect (c.f., Micco,

Stein, and Ordonez, 2003; Baldwin and Taglioni, 2007), or, indeed, no EMU effect (c.f.,

Santos Silva and Tenreyro, 2010a; Olivero and Yotov, 2012). However, other methodological

differences aside, these studies have mainly relied on relatively small samples.5 As Glick

and Rose (2016) and Rose (2017) rightly point out, using a sample with many countries
4The algorithm we present draws on an earlier method used in Figueiredo, Guimarães, and Woodward

(2015) for PPML with two-way HDFEs. It also has several other features not used in this study which other
researchers may find useful, such as allowing for pair-specific time trends as well as specifications with added
sectoral-level heterogeneity. It was originally programmed by Zylkin (2017) and is available in Stata via ssc:
to install, type “ssc install ppml_panel_sg, replace”.

5A notable exception is Mika and Zymek (2016), who also show that the EMU effect vanishes using
PPML with many countries. In their paper, the computational issues surrounding PPML are addressed by
“artificially balancing” bilateral trade (such that the usual “exporter-time” and “importer-time” FEs become
only “country-time” FEs) and by only using more recent years. Glick and Rose (2016) question whether these
adjustments lead to truly comparable results. Our findings, however, support those of Mika and Zymek.
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and years is in principle always the most sensible approach. However, in practice, it is also

this preference that leads to the large difference in estimates. As Santos Silva and Tenreyro

(2006) summarize, OLS tends to put relatively more weight on smaller trade flows compared

with PPML. Thus, the inclusion of many smaller countries naturally tends to exacerbate the

difference between PPML and OLS estimates. We demonstrate this argument by showing

how OLS and PPML estimates of the EMU effect continually diverge as increasingly smaller

countries are added to the sample. Given the wide-spread use of PPML and the abundance of

policy questions that require longitudinal trade data, we hope this simple point will stimulate

more rigorous investigations as to why these two leading estimators in the gravity literature

give results that can differ so widely.

We now turn to describing our HDFE PPML estimation procedure. The following sec-

tions then add our estimates and conclusions.

2 PPML with High-Dimensional Fixed Effects

Let Xijt denote trade flows from exporter i to importer j at time t. wijt is a vector containing

our covariates of interest, including currency unions and other controls. With exporter-time

(λit), importer-time (ψjt), and exporter-importer (“pair”) fixed effects (µij), the estimating

equation is

Xijt = exp (λit + ψjt + µij + b′wijt) + νijt, (1)

where νijt denotes the remainder error term. Our goal is to obtain PPML estimates for

coefficient vector b in the presence of these high-dimensional fixed effects. To fix ideas, we

first write an expression for the corresponding estimate of b, denoted by b̂, in the form of a

generalized PPML first-order condition:

b̂ :
∑
i

∑
j

∑
t

[
Xijt − exp

(
λ̂it + ψ̂jt + µ̂ij + b̂′wijt

)]
wijt = 0. (2)

4



Noting that the PPML first-order condition for a group fixed effect equates the sum of the

dependent variable with the sum of the conditional mean for that group, the remaining

first-order conditions associated with (1) may be written as

λ̂it : Yit − eλ̂it
∑
j

exp
(
ψ̂jt + µ̂ij + b̂′wijt

)
= 0, (3)

ψ̂jt : Xjt − eψ̂jt
∑
i

exp
(
λ̂it + µ̂ij + b̂′wijt

)
= 0, (4)

µ̂ij :
∑
t

Xijt − eµ̂ij
∑
t

exp
(
λ̂it + ψ̂jt + b̂′wijt

)
= 0, (5)

where Yit ≡
∑
j Xijt and Xjt ≡

∑
iXijt respectively denote the sums of all flows associated

with each exporter i and importer j at time t.6

Along with (2), these equations could be used to solve the complete system in terms of

b̂, eλ̂it , eψ̂jt , and eµ̂ij by extending the “zig-zag” algorithm demonstrated in Guimarães and

Portugal (2010) for the case of two-way HDFEs. However, to follow more closely the actual

methods used, and to emphasize the tight connection linking estimation with theory, it is

useful instead to re-write our system of equations in the form of a “structural gravity” model

à la Anderson and van Wincoop (2003).7 To do so, first define

Ψit ≡
Yit/XWt

eλ̂it

, Φjt ≡
Xjt/XWt

eψ̂jt

, Dij ≡ eµ̂ij/XWt, (6)

where XWt ≡
∑
i

∑
j Xijt denotes total world trade at time t, to be used as a scaling factor.8

We make these substitutions because, after plugging these definitions into (1), we arrive

at a new version of our estimating equation that closely resembles the famous “structural
6Most empirical applications, including the present one, tend not to include “self-trade” (i.e., “Xii”) in

the estimation. Thus, in our case, Yit is i’s total exports and Xjt is j’s total imports. However, Yotov,
Piermartini, Monteiro, and Larch (2016) describe several applications in which including Xii might be
appealing. The algorithm allows for either possibility without loss of generality. Furthermore, either approach
is compatible with structural gravity (c.f., eq. (17) in French, 2016).

7So long as a solution exists, a finer point we discuss further in the Online Appendix, the solution is
unique (Gourieroux, Monfort, and Trognon, 1984).

8The utility of this scaling factor is that, as in the analogous system used in Anderson and van Wincoop
(2003), imposing Dij = Φjt = Ψit = 1 (with b̂ = 0) equates to a world where trade frictions do not affect
choice of trade partner. This serves as a natural initial guess to use for the solution algorithm.

5



gravity” equation of Anderson and van Wincoop (2003):

Xijt =
(
YitXjt

XWt

)Dije
b̂′wijt

ΨitΦjt

+ εijt.

And, furthermore, we may also now re-write our system of first-order conditions as follows:

0 =
∑
i

∑
j

∑
t

Xijt −
(
YitXjt

XWt

)Dije
b̂′wijt

ΨitΦjt

wijt, (7a)

Ψit =
∑
j

Xjt/XWt

Φjt

Dije
b̂′wijt , (7b)

Φjt =
∑
i

Yit/XWt

Ψit

Dije
b̂′wijt , (7c)

Dij =
∑
tXijt∑

t

(
YitXjt

XW t

) (
eb̂′wijt

ΨitΦjt

) . (7d)

In (7b) and (7c), Ψit and Φjt are analogs of the “multilateral resistances” from structural

gravity. As in Anderson and van Wincoop (2003) (and the vast subsequent literature fol-

lowing Anderson and van Wincoop, 2003), they capture the general equilibrium effects of

trade with third countries. The form of these constraints is well-known and Fally (2015)

has previously shown they naturally derive from the FOC’s of PPML with two-way fixed

effects. The new term we add, however, is Dij in (7d), the “pair” fixed effect recommended

by Baier and Bergstrand (2007) to address the problem of endogeneity bias due to unob-

servable heterogeneity across pairs.9 By the “adding-up” properties of PPML, this last term

may be obtained by equating sums of fitted trade flows over time within each pair with sums

of actual flows, as in (7d).

With this system in place, the steps to follow are exactly as outlined in (7a)-(7d). That

is: (i) given initial guesses for {Dij,Ψit,Φjt}, compute a solution for b̂ using (7a); (ii)-(iii)

Update Ψit and Φjt using (7b) and (7c); (iv) update Dij using (7d); and (v) return to step

(i) with new values for {Dij,Ψit,Φjt}, iterating until convergence.10

9Specifically, estimates of the effect of CUs will be biased if pairs of countries that “select” into CUs
trade more or less than those that do not. We refer readers to Baier and Bergstrand (2007) for further
discussion. An added advantage of pair fixed effects is that they control for all observable and unobservable
time-invariant trade costs in the structural gravity model.

10One way to obtain b̂ in step (i) would be to solve for it directly via a nonlinear solver. However,
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The solution converges rapidly, even for data structures that would ordinarily be too large

for direct estimation to be practical. Applying three-way FEs to Glick and Rose (2016)’s

data, for example, will require us to account for more than 50,000 fixed effects.11 Thus, their

data will serve as an interesting test, which we now turn to.

3 Re-assessing the Effects of Currency Unions

Following Glick and Rose (2016)’s notation, we define “CUijt”—a dummy variable equal to

1 if i and j share a common currency in year t—as our main regressor of interest. Thus, we

may re-produce Glick and Rose’s preferred specification with three-way fixed effects either

in its original OLS form,

lnXijt = λit + ψjt + µij + βzijt + γCUijt + εijt, (8)

or in the form of our own preferred alternative, using PPML:

Xijt = exp (λit + ψjt + µij + βzijt + γCUijt) + νijt, (9)

where, in either case, zijt denotes a set of non-CU controls and the final terms (εijt and νijt)

denote residual errors. To motivate our preference for PPML, we note, as Santos Silva and

Tenreyro (2006) have, that imposing the OLS moment condition E[lnXijt − ̂lnX ijt|·] = 0

does not also imply that E[Xijt − X̂ijt|·] = 0, such that OLS estimates of γ are likely to be

biased.12

an even more efficient approach is to modify the procedure so that b̂ can be solved for using iteratively re-
weighted least squares (IRLS), as we discuss in the Online Appendix. The Online Appendix also covers other
important details such as how to compute clustered standard errors and how to implement the pre-estimation
“existence check” recommended by Santos Silva and Tenreyro (2010b).

11Table A1 of the Online Appendix summarizes computation times for different sample sizes (both in terms
of countries and years considered) for the ppml-command of Santos Silva and Tenreyro (2011) and the HDFE
ppml_panel_sg-command of Zylkin (2017). We also note that the max model size allowed in Stata is only
11,000. For linear specifications this restriction can be circumvented by simple demeaning-transformations
not available for non-linear models.

12Santos Silva and Tenreyro (2006) provide extensive discussion of this point as well as a comparison
study of PPML versus a range of other nonlinear estimators. While PPML implicitly assumes the variance
of νijt is proportional to the conditional mean, it generally performs adequately even when this assumption
is not met. Fernández-Val and Weidner (2016) and Jochmans (forthcoming) have documented favorable
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Columns (1) to (3) of Table 1 reproduce the right panel of Table 5 from Glick and Rose

(2016). Columns (4) to (6) estimate the same specifications but with PPML. Additionally,

we report for each coefficient three types of standard errors: in parentheses we report Huber-

White heteroscedasticity-robust standard errors (Huber, 1967; White, 1982) as in Glick and

Rose (2016); in brackets we report standard errors clustered by country-pair, the default

when using the algorithm of Zylkin (2017); in curly brackets we report multi-way clustered

standard errors clustered by exporter, importer, and year. While this turns out to be the

most conservative method, we argue it has special salience here, since it actually allows for

correlation in the error term within all six possible cluster dimensions {i, j, t, it, jt, ij}.13

Our main observations are as follows. First, note that the main effect for CUs is substan-

tially smaller than in Glick and Rose (2016) (compare, for example, columns (1) and (4).) If

standard errors are multi-way clustered, it also becomes statistically insignificant. Given the

size of some of the estimates that have been previously in the literature (c.f., Rose, 2000),

this is noteworthy.

Second, our PPML estimates for the EMU effect in columns (5) and (6) are even less

favorable. When standard errors are clustered either by country-pair or multi-way, the EMU

loses significance.14 Third, however, for all other currency unions except the EMU, PPML

leads to significant positive effects and the magnitude is nearly tripled versus Glick and

Rose (2016), suggesting a trade-promoting effect of e.700 − 1 = 101.3% (versus e.298 − 1 =

34.7%). The strong positive result for the “net EMU effect” from Glick and Rose (2016) thus

completely reverses, suggesting the EMU has been a major disappointment in this regard.

Finally, other individual CU estimates, shown in column (6), are also affected, to varying

small-sample properties for PPML with two-way FEs. We note that similar investigations for the case of
three-way FEs would be valuable additions to the literature.

13We have programmed this clustering method into the newest version of the ppml_panel_sg-command by
way of the multiway-option, following the methods described in our Online Appendix. ppml_panel_sg also
allows user-specified cluster variables for up to four dimensions. See Cameron, Gelbach, and Miller (2011)
for a general discussion of multi-way clustering and Egger and Tarlea (2015) for a discussion of this specific
point in gravity models

14Olivero and Yotov (2012) find the Euro effect is only significant when one accounts for slow, dynamic
adjustments over time. On the other hand, Berger and Nitsch (2008) argue the Euro effect is biased upward
by not accounting for long-term trends in European trade. For this reason, it is worth mentioning that our
results are robust to using pair time-trends, lagged CU and EMU terms, and/or wider time intervals.
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degrees. In particular, we see the large PPML estimate for non-EMU CUs is driven by the

British £, the French Franc, and “other CUs”.15

Table 2 then investigates robustness of the findings of Specification (5) with respect to

country sample and period of investigation, similar to Glick and Rose (2016)’s Table 8. While

no single subsample leads to a positive significant effect for the Euro, the effects for all other

currency unions are robust for all samples with a large time span.16

For most subsamples, the PPML coefficient estimates for the Euro are substantially

smaller than their linear counterparts. However, for the subsample of “Present/future EU”

countries we obtain comparable point estimates of −0.305 and −0.267, respectively. This

hints at the importance of the number of countries included in the data set, as also em-

phasized by Rose (2017). Thus, in order to better understand how differences between the

PPML and linear estimates evolve with the sample size, in Figure 1, we plot estimates of

the linear model and PPML starting with the EU a whole and then adding one country at a

time ranked by 2013 GDP, using the full period from 1948-2013. Our estimates reveal that

adding more and more (smaller) countries leads to an overall rising OLS estimate, while the

PPML estimates stabilize after the inclusion of around 40 additional countries.

The properties of these estimators support a natural interpretation for this divergence.

Basically, with the formation of the EMU, trade fell between EMU members relative to trade

with both the rest of the EU as well as with the six largest non-EU economies (the US, China,

Japan, Brazil, Russia, and India), which together constitute more than two-thirds of world

non-EMU GDP. Intra-EMU trade rose, however, relative to trade with smaller partners,

starting with the seventh largest non-EU economy (Canada). Intuitively, smaller countries

contribute relatively more to the sum of log trade flows (the key moment used to construct
15Note we treat missing observations in the Glick and Rose (2016) as missing for both our linear and

PPML specifications. As PPML allows zero trade flows, we also run specifications (4)-(6) treating all
missing observations as zero trade flows. Table A2 in the Online Appendix reports the results, showing that
including zero trade flows hardly affect the estimates. We also perform a Park test (not shown) for all PPML
specifications for the validity of a linear model; we receive a p-value of 0.000 (i.e., “reject”) in all cases.

16Subsamples without observations prior to 1985 include only very few observations of country-pairs leaving
or joining non-EMU currency unions. Thus, we find no significant effects (or even cannot identify the effects)
for some subsamples. In Table A3 of the Online Appendix we provide the findings for the same subsamples
estimated with the linear specification.
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fixed effects with OLS) than to the sum of trade flows in levels (the key moment used with

PPML). Therefore, OLS places relatively more weight on each additional small country we

add to the reference group, even as their contributions to world trade become increasingly

marginal.17

Forced to choose between these two weighting schemes, we would suggest the effective

weights used by PPML are more appropriate. As shown in Fally (2015), and in our own

(7b) and (7c), our PPML estimates ensure exact aggregation of the multilateral resistance

constraints from a structural gravity model. Since these constraints provide direct theoretical

motivation for the form of the estimation, this is highly desirable. Together, PPML’s theory-

consistent weighting properties and robustness to heteroscedasticity-related concerns provide

sound reasons for us to recommend our PPML estimates as a preferred benchmark.

4 Conclusions

We make three main contributions. First, we offer practical methods to overcome impor-

tant challenges with the estimation of structural gravity models with high-dimensional fixed

effects and clustered standard errors using PPML. Second, these innovations lead to very

different conclusions about the effects of currency unions on trade, especially for how the

Euro has failed to promote trade while non-Euro CUs emphatically have.

Third, we identify a cautionary example where OLS and PPML gravity estimates differ

to an especially dramatic degree. We relate this difference to the number of small countries

included in our sample and the effective weights used by each estimator. While we have

several reasons for preferring our PPML estimates, we find it notable that computational

issues limit choice of estimator precisely when this choice seems to matter most. Thus, we,

too, await future advances, which we hope will provide more rigorous guidance for estimating

three-way gravity models.

17See Fally (2015) for a discussion of the moments used to construct fixed effects under both OLS and
PPML.
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Table 1: Linear Specification vs. PPML
Linear Specifications PPML

All CUs Disagg. EMU Disagg. CUs All CUs Disagg. EMU Disagg. CUs
(1) (2) (3) (4) (5) (6)

All CUs 0.343 0.130
(0.018)∗∗∗ (0.010)∗∗∗
[0.049]∗∗∗ [0.042]∗∗∗
{0.080}∗∗∗ {0.081}

EMU 0.429 0.432 0.030 0.027
(0.021)∗∗∗ (0.021)∗∗∗ (0.010)∗∗∗ (0.010)∗∗∗
[0.056]∗∗∗ [0.056]∗∗∗ [0.042] [0.041]
{0.149}∗∗∗ {0.149}∗∗∗ {0.092} {0.091}

All Non-EMU CUs 0.298 0.700
(0.025)∗∗∗ (0.025)∗∗∗
[0.069]∗∗∗ [0.107]∗∗∗
{0.097}∗∗∗ {0.172}∗∗∗

CFA Franc Zone 0.583 0.137
(0.100)∗∗∗ (0.108)
[0.212]∗∗∗ [0.339]
{0.186}∗∗∗ {0.307}

East Caribbean CU -1.637 -1.014
(0.106)∗∗∗ (0.081)∗∗∗
[0.255]∗∗∗ [0.278]∗∗∗
{0.334}∗∗∗ {0.319}∗∗∗

Aussie $ 0.389 0.168
(0.196)∗∗ (0.121)
[0.325] [0.293]
{0.248} {0.282}

British £ 0.554 1.004
(0.034)∗∗∗ (0.034)∗∗∗
[0.086]∗∗∗ [0.143]∗∗∗
{0.101}∗∗∗ {0.234}∗∗∗

French Franc 0.874 2.096
(0.083)∗∗∗ (0.062)∗∗∗
[0.245]∗∗∗ [0.219]∗∗∗
{0.269}∗∗∗ {0.302}∗∗∗

Indian Rupee 0.522 0.082
(0.115)∗∗∗ (0.149)
[0.318] [0.373]
{0.110}∗∗∗ {0.308}

US $ -0.051 0.014
(0.063) (0.022)
[0.164] [0.068]
{0.229} {0.065}

Other CUs -0.104 0.788
(0.058)∗ (0.052)∗∗∗
[0.179] [0.187]∗∗∗
{0.247} {0.247}∗∗∗

RTAs 0.395 0.392 0.389 0.167 0.169 0.168
(0.009)∗∗∗ (0.010)∗∗∗ (0.010)∗∗∗ (0.009)∗∗∗ (0.009)∗∗∗ (0.009)∗∗∗
[0.024]∗∗∗ [0.024]∗∗∗ [0.024]∗∗∗ [0.040]∗∗∗ [0.039]∗∗∗ [0.039]∗∗∗
{0.062}∗∗∗ {0.061}∗∗∗ {0.061}∗∗∗ {0.076}∗∗ {0.075}∗∗ {0.075}∗∗

CurCol 0.262 0.275 0.248 0.733 0.545 0.303
(0.032)∗∗∗ (0.032)∗∗∗ (0.033)∗∗∗ (0.059)∗∗∗ (0.050)∗∗∗ (0.042)∗∗∗
[0.108]∗∗ [0.109]∗∗ [0.112]∗∗ [0.270]∗∗∗ [0.220]∗∗ [0.164]∗
{0.155}∗ {0.159}∗ {0.170} {0.288}∗∗ {0.251}∗∗ {0.148}∗∗

N 877736 877736 877736 879794 879794 879794

Notes: Columns (1) to (3) of this table reproduce the right panel of Table 5 from Glick and Rose (2016). Columns
(4) to (6) estimate the same specifications but with PPML. 879,794 observations for more than 200 countries for
the years 1948 to 2013. All columns include (roughly) 11,000 exporter-time, 11,000 importer-time, and 32,000 pair
FEs. Robust standard errors in parentheses. Standard errors clustered by country pairs in brackets. Standard
errors clustered by exporter, importer, and year in curly brackets. ∗ p < 0.10, ∗∗ p < .05, ∗∗∗ p < .01. See text for
further details.
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Table 2: PPML Estimation of Different Subsamples
1948-2013 1985-2013 1995-2013 1948-2005 1985-2005 1995-2005

All countries

EMU 0.030 0.006 0.010 -0.055 -0.063 -0.052
(0.010)∗∗∗ (0.010) (0.013) (0.013)∗∗∗ (0.010)∗∗∗ (0.011)∗∗∗
[0.042] [0.032] [0.027] [0.040] [0.029]∗∗ [0.022]∗∗
{0.092} {0.058} {0.038} {0.082} {0.050} {0.034}

All Non-EMU CUs 0.700 0.084 0.052 0.685 -0.002 0.009
(0.025)∗∗∗ (0.027)∗∗∗ (0.031)∗ (0.025)∗∗∗ (0.030) (0.035)
[0.107]∗∗∗ [0.078] [0.088] [0.103]∗∗∗ [0.067] [0.074]
{0.172}∗∗∗ {0.073} {0.087} {0.156}∗∗∗ {0.056} {0.072}

Industrial countries plus present/future EU

EMU -0.138 -0.055 -0.009 -0.200 -0.122 -0.075
(0.012)∗∗∗ (0.011)∗∗∗ (0.014) (0.017)∗∗∗ (0.012)∗∗∗ (0.012)∗∗∗
[0.047]∗∗∗ [0.036] [0.029] [0.049]∗∗∗ [0.035]∗∗∗ [0.026]∗∗∗
{0.081}* {0.055} {0.037} {0.080}∗∗ {0.046}∗∗∗ {0.034}∗∗

All Non-EMU CUs 1.159 -0.188 0.007 1.066 -0.050 0.018
(0.043)∗∗∗ (0.147) (0.268) (0.041)∗∗∗ (0.145) (0.172)
[0.181]∗∗∗ [0.304] [0.292] [0.166]∗∗∗ [0.290] [0.212]
{0.270}∗∗∗ {0.366} {0.160} {0.232}∗∗∗ {0.282} {0.095}

Upper income (GDP p/c ≥ $ 12,736)

EMU -0.076 -0.027 -0.002 -0.134 -0.089 -0.063
(0.012)∗∗∗ (0.011)∗∗ (0.015) (0.015)∗∗∗ (0.012)∗∗∗ (0.013)∗∗∗
[0.043]∗ [0.036] [0.030] [0.043]∗∗∗ [0.035]∗∗ [0.027]∗∗
{0.073} {0.052} {0.037} {0.066}∗∗ {0.043}∗∗ {0.032}∗∗

All Non-EMU CUs 0.762 0.743
(0.130)∗∗∗ (0.107)∗∗∗
[0.186]∗∗∗ [0.152]∗∗∗
{0.232}∗∗∗ {0.194}∗∗∗

Rich Big (GDP≥$ 10bn, GDP p/c≥$ 10k)

EMU -0.055 -0.025 -0.004 -0.108 -0.088 -0.073
(0.012)∗∗∗ (0.011)∗∗ (0.015) (0.015)∗∗∗ (0.012)∗∗∗ (0.013)∗∗∗
[0.044] [0.036] [0.030] [0.044]∗∗ [0.034]∗∗∗ [0.027]∗∗∗
{0.077} {0.053} {0.038} {0.073} {0.043}∗∗ {0.032}∗∗

All Non-EMU CUs 1.312 1.223
(0.059)∗∗∗ (0.055)∗∗∗
[0.184]∗∗∗ [0.158]∗∗∗
{0.321}∗∗∗ {0.256}∗∗∗

OECD

EMU -0.151 -0.059 -0.017 -0.203 -0.117 -0.067
(0.013)∗∗∗ (0.013)∗∗∗ (0.018) (0.016)∗∗∗ (0.013)∗∗∗ (0.014)∗∗∗
[0.046]∗∗∗ [0.042] [0.036] [0.045]∗∗∗ [0.037]∗∗∗ [0.029]∗∗
{0.072}∗∗ {0.068} {0.048} {0.055}∗∗∗ {0.046}∗∗ {0.038}∗

All Non-EMU CUs 1.227 1.180
(0.061)∗∗∗ (0.059)∗∗∗
[0.220]∗∗∗ [0.187]∗∗∗
{0.434}∗∗∗ {0.365}∗∗∗

Present/future EU

EMU -0.305 -0.068 0.021 -0.448 -0.192 -0.060
(0.017)∗∗∗ (0.014)∗∗∗ (0.017) (0.026)∗∗∗ (0.018)∗∗∗ (0.017)∗∗∗
[0.064]∗∗∗ [0.036]∗ [0.033] [0.072]∗∗∗ [0.045]∗∗∗ [0.037]
{0.099}∗∗∗ {0.055} {0.041} {0.124}∗∗∗ {0.084}∗∗ {0.063}

All Non-EMU CUs 1.157 1.131
(0.054)∗∗∗ (0.052)∗∗∗
[0.233]∗∗∗ [0.206]∗∗∗
{0.517}∗∗ {0.469}∗∗

Notes: This table reports robustness estimates of the findings of Specification (5) with respect to country
sample and period of investigation, as in Table 8 of Glick and Rose (2016). Robust standard errors in
parentheses. Standard errors clustered by country pairs in brackets. Standard errors clustered by exporter,
importer, and year in curly brackets. ∗ p < 0.10, ∗∗ p < .05, ∗∗∗ p < .01. See text for further details.
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Figure 1: The Effect of the Country Sample on EMU Coefficient Estimates
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Online Appendix for
“The Currency Union Effect: A PPML Re-assessment with

High-Dimensional Fixed Effects”

by Mario Larch, Joschka Wanner, Yoto V. Yotov, Thomas Zylkin

This Online Appendix elaborates on several important considerations such as how to obtain
multi-way clustered standard errors and how to verify before estimation that valid estimates
do indeed exist. It is in part intended to serve as additional technical documentation for
interested readers seeking to work with or extend the machinery used in ppml_panel_sg. All
procedures described here can be verified to reproduce results produced by other widely-used
routines. See the supporting material included with Zylkin (2017) for examples. Further,
we provide some additional results and robustness checks.

Iteratively re-weighted least squares algorithm. The IRLS version of the algorithm
is analogous to typical IRLS estimation in that it repeatedly utilizes weighted least squares
estimation (of a particular form specific to the estimator being used), which is continuously
updated as new estimates are produced, until both weights and estimates eventually con-
verge. An IRLS approach is thus easily embedded within the broad approach described in
the paper.

For IRLS estimation of a PPML model, it is necessary to first define an adjusted depen-
dent variable—call it X̃ijt—which is given by:

X̃ijt = Xijt − X̂ijt

X̂ijt

+ b̂′wijt,

For PPML, the relevant weighting matrix for the estimation is simply given by the conditional
mean X̂ijt. Thus, given X̂ijt and X̃ijt, an updated value for b̂ can be simply computed as:

b̂ =
[
W′X̂W

]−1
WX̂X̃,

where X̂ is a diagonal weighting matrix with elements X̂ijt on its main diagonal and W is
the matrix of main covariates wijt. As in a more-typical IRLS loop, the weighting matrix
is updated repeatedly as each new iteration of b̂ implies a new conditional mean.18 What
must be added here are the intermediate steps needed to compute Ψ, Φ, and D, which follow
from (7b)-(7d). Iterating repeatedly on these objects, along with b̂, will eventually converge
to the correct conditional mean, weighting matrix, and PPML estimates for b̂. Since the
algorithm requires repeated iteration anyway, the IRLS method is always the most efficient
approach versus solving the first-order condition for b̂ exactly each time through the loop.19

18For clarity, X̃ijt is derived from a first-order Taylor approximation of the PPML FOC for b̂ around
b̂0, where b̂0 denotes the current guess for b̂. The use of X̂ as a weighting matrix also follows from this
approximation. For a reference, see Nelder and Wedderburn (1972).

19The adoption of IRLS in ppml_panel_sg was inspired by the use of a similar principle—albeit in an
altogether very different procedure—in the latest version of poi2hdfe, by Guimarães (2016).

A1



Three-way within transformation. A useful prior for the rest of these notes is the no-
tion of a three-way “within-transformation”, generalizing the two-way procedures of Abowd,
Creecy, and Kramarz (2002) and Guimarães and Portugal (2010) and as may be applied via
the hdfe algorithm of Correia (2016).

Let each of the “main” (non-fixed effect) regressors of the vector wijt on the right hand
side be denoted by wkijt, with superscript k indexing the kth regressor. The idea is to
(iteratively) regress each wkijt on the complete set of fixed effects. Doing so results in a new
set of “partialed-out” (or “within-transformed”) versions of wkijt, which have been removed
of any partial correlation with the set of fixed effects. For the current three-way HDFE
context—with it, jt, and ij fixed effects—the needed within-transformation for each wkijt is
given by the following system of equations:∑

j

(
wkijt − λ̃kit − ψ̃kjt − µ̃kij

)
= 0 ∀i, t (A1a)

∑
i

(
wkijt − λ̃kit − ψ̃kjt − µ̃kij

)
= 0 ∀j, t (A1b)

∑
t

(
wkijt − λ̃kit − ψ̃kjt − µ̃kij

)
= 0 ∀i, j, (A1c)

where (A1a)-(A1c) are derived from the first-order conditions from an OLS regression of wk
on a set of fixed effects {λ̃kit, ψ̃kit, µ̃kij}. Either by using “zig-zag” iteration methods or via the
more sophisticated algorithm of Correia (2016), this system is easily solved even for a large
number of fixed effects. The resulting, now-transformed regressors, which we will denote as
w̃k, are given by:

w̃kijt = wkijt − λ̃kit − ψ̃kjt − µ̃kij.

Variations of this within-transformation procedure will come into play in the discussion
that follows of how we construct standard errors as well as how we implement the “check for
existence” recommended by Santos Silva and Tenreyro (2010b). Thus, these basic mechanics
will be helpful to keep in mind.

Standard errors. The construction of standard errors largely follows the exposition in
the Appendix of Figueiredo, Guimarães, and Woodward (2015), which we extend to the case
of three-way HDFEs with multi-way clustering. Let ∑i,j,t denote a sum over all observations
and let xijt denote the vector of all covariates associated with observation ijt, including all
0/1 dummy variables associated with each fixed effect. The estimated “robust” variance-
covariance (VCV) matrix for our PPML estimates that we need to construct is given by

V̂rob =
∑
i,j,t

X̂ijtxijtx′ijt

−1

︸ ︷︷ ︸
V̂

×

∑
i,j,t

(
Xijt − X̂ijt

)2
xijtx′ijt


︸ ︷︷ ︸

M

×

∑
i,j,t

X̂ijtxijtx′ijt

−1

︸ ︷︷ ︸
V̂

, (A2)

where V̂ is proportional to the usual (uncorrected) Poisson MLE VCV matrix and X̂ijt is the
conditional mean from our regression. The middle term, M, provides a heteroscedasticity
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correction.
While we can compute the matrix ∑i,j,t X̂ijtxijtx′ijt, inversion of this matrix is potentially

infeasible due to the large dimension of xijt. The problem is simplified, however, by recog-
nizing we are only interested in the submatrix of V̂ that pertains to b̂, the coefficients for
our non-fixed effect regressors. Call this submatrix V̂∗. To obtain V̂∗, we make use of the
following two “tricks”: (i) the V̂ that appears in (A2) is proportional to the VCV matrix
that would be produced by any weighted least squares regression using xijt as covariates and√
X̂ijt as weights; (ii) By the Frisch-Waugh-Lovell theorem, the dimensionality of an HDFE

linear regression can be easily reduced by first applying a within-transformation (a weighted
one in this case).

We thus proceed in two steps. First, using a weighted version of our within-transformation
procedure, we regress each weighted regressor

√
X̂ijtw

k
ijt on a set of exporter-time, importer-

time, and exporter-importer fixed effects, which themselves must also be weighted by
√
X̂ijt.

The system of equations associated with this operation may be written as∑
j

X̂ijt

(
wkijt − λ̃k∗it − ψ̃k∗jt − µ̃k∗ij

)
= 0 ∀i, t (A3a)

∑
i

X̂ijt

(
wkijt − λ̃k∗it − ψ̃k∗jt − µ̃k∗ij

)
= 0 ∀j, t (A3b)

∑
t

X̂ijt

(
wkijt − λ̃k∗it − ψ̃k∗jt − µ̃k∗ij

)
= 0 ∀i, j, (A3c)

where {λ̃k∗it , ψ̃k∗it , µ̃k∗ij } are the fixed effects terms we now need to solve for. Despite the
presence of X̂ijt in (A3a)-(A3c), the basic principles and methods to solve are no different
than with (A1a)-(A1c).

The transformed regressors we need for our auxiliary regression—call these w̃k∗i —are
given by

w̃k∗ijt =
√
X̂ijt

(
wkijt − λ̃k∗it − ψ̃k∗jt − µ̃k∗ij

)
.

With these residuals in hand, the second step is to now perform the following OLS regression:

Xijt =
∑
k

akw̃
k∗
ijt + ui (A4)

The estimates obtained from this regression are irrelevant. The main point is that, after
employing the two “tricks” mentioned above, the VCV matrix from (A4) will be equal to
s2 × V̂∗, where s2 is the usual mean squared error from the linear regression.

Finally, now that we have V̂∗, the full, heteroscedasticity-robust VCV matrix for our
main regressors can be computed as

V̂∗rob = V̂∗ ×M∗ × V̂∗,
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where the middle term,

M∗ =

∑
i,j,t

(
Xijt − X̂ijt

)2

Xijt

w̃∗ijtw̃∗′ijt

 ,
must be adjusted to take into account the fact that each w̃k∗ijt is weighted by

√
X̂ijt.

Multi-way clustering. The multi-way clustered VCV matrix takes the form

V̂∗clus = V̂∗M∗
clusV̂∗,

where V̂∗ is calculated in the exact same way as described above. For the matrix M∗
clus, we

follow Cameron, Gelbach, and Miller (2011), taking into account that we are still dealing
only with a submatrix of the overall matrix V̂, and calculate it as follows:

M∗
clus =

∑
||r||=k,r∈R

(−1)k+1M̃∗
r,

with

M̃∗
r =

∑
l

∑
m

(
Xl − X̂l

)
√
Xl

(
Xm − X̂m

)
√
Xm

w̃∗l w̃∗′mIr(l,m) r ∈ R,

where the set R ≡ {r : rd ∈ {0, 1}, d = 1, 2, ..., D, r 6= 0}, where D is the number of
dimensions of clustering and the elements of R index whether two observations are joint
members of at least one cluster. l and m denote specific ijt-observations. Ir(l,m) takes the
value one if observations l and m are both members of all clusters for which rd = 1. ||r||
denotes the `1-norm of the vector r.

Check for existence. As illuminated in Santos Silva and Tenreyro (2010b), depending
on the configuration of the data, estimates from Poisson regressions may not actually exist.
Specifically, if two or more regressors are perfectly collinear over the subsample where the
dependent variable is non-zero, researchers are advised to carefully investigate each “impli-
cated” regressor to see if it can be included in their model. Otherwise, estimation routines
may result in spurious estimates, or even no estimates at all.20

With multiple high-dimensional fixed effects, implementing the checks favored by Santos
Silva and Tenreyro (2010b) may seem a daunting task, since collinearity checks across all
the different fixed effects to determine whether one or more are “implicated” may be com-
putationally expensive and/or conceptually difficult, especially when there are more than
two HDFEs. In addition, it is also necessary to check whether each individual regressor is
collinear over Xijt > 0 with the complete set of fixed effects, as well as whether any subset
of fixed effect and non-fixed effect regressors are collinear over Xijt > 0.

20Note this is a different issue altogether than the standard issue of “perfect collinearity” and can be
significantly more difficult to detect. See Santos Silva and Tenreyro (2010b) for a simple example of a model
with non-collinear regressors which does not have a solution.
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Fortunately, however, it turns out these issues are quickly and easily resolved by (i)
applying the within-transformation technique described above and (ii) recognizing that fixed
effects themselves only present an issue under easily-identifiable circumstances. To see this,
let “w̃kijt|X>0” denote the within-transformed version of each non-fixed effect regressor wk after
performing a within-transformation (only this time restricted to the subsample Xijt > 0).
After applying the within-transformation, these w̃kijt|X>0’s now only contain the residual
variation in each wkijt overXijt > 0 that is uncorrelated with the set of fixed effects. Thus, any
individual w̃kijt|X>0 that is uniformly zero should be considered “implicated”, since this only
occurs if wkijt is perfectly collinear with the set of fixed effects over Xijt > 0. Furthermore, it
is now a simple matter to apply a standard collinearity check among the remaining w̃kijt|X>0
to test for joint collinearity over Xijt > 0, taking into account all possible correlations with
the set of fixed effects.

That still leaves the matter of collinearity among the potentially very many fixed effects,
which may seem the most difficult step of all. However, Santos Silva and Tenreyro (2010b)
also clarify that it should always be possible to include any regressor that has “reasonable
overlap” in the values that it takes over both the Xijt > 0 and Xijt = 0 samples. While there
is no hard-and-fast rule that may be applied to determine how much overlap is “reasonable”,
the condition they include with their ppml command is to check whether the mean value of
each wkijt over Xijt > 0 lies between the maximum and minimum values it takes over Xijt = 0.
Setting aside the more general (and comparably benign) issue of collinearity over all Xijt, the
only situation where any of our fixed effects would fail this condition would be if a country
did not engage in exporting or importing in a given year or if a pair of countries never trade
during the sample.21 Thus, ppml_panel_sg drops all observations for pairs of countries who
never trade, exporters who don’t export anything in a given year, and importers who don’t
import anything in the given year.22

21When multiple fixed effects are collinear over the whole sample (as is always the case in this context),
these manifest as redundant FOC’s which do not affect the existence or uniqueness of a solution for b̂. Thus,
even though one might construct examples where one or more of the fixed effect dummies do not take on both
0 and 1 over each subsample, these scenarios can always be resolved by accounting for general collinearity.

22Ultimately, whether or not these observations are dropped or kept does not affect much. What standard
Stata commands will do is try to force the conditional mean for these observations to zero, by (wrongly)
estimating large, negative values for their associated fixed effects. Stata users should be reassured that,
despite this oddity, other estimates are usually fine so long as the main set of non-fixed effect regressors
meets the conditions described above.
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Table A2: PPML with Missings as Zero Trade Flows
All CUs Disagg. EMU Disagg. CUs

(1) (2) (3)

All CUs 0.153
(0.010)∗∗∗
[0.043]∗∗∗
{0.083}∗

EMU 0.0521 0.0489
(0.010)∗∗∗ (0.010)∗∗∗
[0.043] [0.042]
{0.095} {0.095}

All Non-EMU CUs 0.728
(0.026)∗∗∗
[0.110]∗∗∗
{0.180}∗∗∗

CFA Franc Zone -0.126
(0.100)
[0.337]
{0.354}

East Caribbean CU -0.877
(0.083)∗∗∗
[0.296]∗∗∗
{0.296}∗∗∗

Aussie $ 0.384
(0.119)∗∗∗
[0.243]
{0.226}∗

British £ 1.060
(0.035)∗∗∗
[0.145]∗∗∗
{0.239}∗∗∗

French Franc 2.096
(0.063)∗∗∗
[0.229]∗∗∗
{0.308}∗∗∗

Indian Rupee 0.170
(0.147)
[0.371]
{0.304}

US $ 0.0183
(0.022)
[0.066]
{0.051}

Other CUs 0.766
(0.053)∗∗∗
[0.185]∗∗∗
{0.250}∗∗∗

RTAs 0.159 0.160 0.159
(0.009)∗∗∗ (0.009)∗∗∗ (0.009)∗∗∗
[0.040]∗∗∗ [0.040]∗∗∗ [0.040]∗∗∗
{0.077}∗∗ {0.077}∗∗ {0.076}∗∗

CurCol 0.827 0.630 0.387
(0.064)∗∗∗ (0.055)∗∗∗ (0.047)∗∗∗
[0.299]∗∗∗ [0.250]∗∗ [0.195]∗∗
{0.291}∗∗∗ {0.257}∗∗ {0.156}∗∗

Notes: This table reproduces the results from Table 1 of the main
text after treating all missing observations in the sample as zeroes.
1,610,165 observations for more than 200 countries for the years 1948
to 2013. Robust standard errors in parentheses. Standard errors
clustered by country pairs in brackets. Standard errors clustered
by exporter, importer, and year in curly brackets. ∗ p < 0.10, ∗∗
p < .05, ∗∗∗ p < .01. See text for further details.
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Table A3: OLS Estimation of Different Subsamples
1948-2013 1985-2013 1995-2013 1948-2005 1985-2005 1995-2005

All countries

EMU 0.429 0.444 0.476 0.172 0.176 0.177
(0.021)∗∗∗ (0.022)∗∗∗ (0.028)∗∗∗ (0.032)∗∗∗ (0.030)∗∗∗ (0.037)∗∗∗
[0.056]∗∗∗ [0.049]∗∗∗ [0.048]∗∗∗ [0.070]∗∗ [0.059]∗∗∗ [0.060]∗∗∗
{0.149}∗∗∗ {0.135}∗∗∗ {0.121}∗∗∗ {0.158} {0.140} {0.120}

All Non-EMU CUs 0.298 0.235 0.301 0.290 0.076 0.167
(0.025)∗∗∗ (0.088)∗∗∗ (0.132)∗∗ (0.026)∗∗∗ (0.107) (0.167)
[0.069]∗∗∗ [0.171] [0.217] [0.066]∗∗∗ [0.167] [0.214]
{0.097}∗∗∗ {0.183} {0.224} {0.091}∗∗∗ {0.170} {0.209}

Industrial countries plus present/future EU

EMU -0.010 -0.052 0.043 -0.088 -0.158 -0.074
(0.021) (0.022)∗∗ (0.025)∗ (0.032)∗∗∗ (0.031)∗∗∗ (0.036)∗∗
[0.055] [0.044] [0.041] [0.069] [0.059]∗∗∗ [0.054]
{0.098} {0.074} {0.042} {0.107} {0.095} {0.068}

All Non-EMU CUs 0.537 -0.151 -0.444 0.532 0.300 0.059
(0.049)∗∗∗ (0.250) (0.329) (0.049)∗∗∗ (0.275) (0.302)
[0.173]∗∗∗ [0.704] [0.518] [0.165]∗∗∗ [0.643] [0.483]
{0.196}∗∗∗ {0.732} {0.460} {0.181}∗∗∗ {0.644} {0.440}

Upper income (GDP p/c ≥ $ 12,736)

EMU 0.107 0.138 0.163 -0.017 -0.007 -0.085
(0.026)∗∗∗ (0.027)∗∗∗ (0.033)∗∗∗ (0.037) (0.035) (0.041)∗∗
[0.059]∗ [0.054]∗∗ [0.054]∗∗∗ [0.080] [0.070] [0.065]
{0.103} {0.094} {0.099} {0.123} {0.104} {0.108}

All Non-EMU CUs 0.456 0.378
(0.138)∗∗∗ (0.123)∗∗∗
[0.248]∗ [0.211]∗
{0.350} {0.277}

Rich Big (GDP≥$ 10bn, GDP p/c≥$ 10k)

EMU 0.109 0.098 0.094 0.051 0.016 -0.066
(0.023)∗∗∗ (0.024)∗∗∗ (0.029)∗∗∗ (0.032) (0.030) (0.032)∗∗
[0.055]∗∗ [0.048]∗∗ [0.047]∗∗ [0.071] [0.058] [0.049]
{0.093} {0.078} {0.081} {0.117} {0.088} {0.090}

All Non-EMU CUs 1.041 0.990
(0.100)∗∗∗ (0.093)∗∗∗
[0.338]∗∗∗ [0.300]∗∗∗
{0.263}∗∗∗ {0.239}∗∗∗

OECD

EMU -0.026 -0.034 -0.031 -0.059 -0.077 -0.081
(0.019) (0.017)∗ (0.021) (0.027)∗∗ (0.021)∗∗∗ (0.021)∗∗∗
[0.065] [0.049] [0.042] [0.066] [0.049] [0.039]∗∗
{0.084} {0.053} {0.033} {0.073} {0.047} {0.041}∗

All Non-EMU CUs 1.052 0.998
(0.129)∗∗∗ (0.122)∗∗∗
[0.630]∗ [0.586]∗
{0.668} {0.621}

Present/future EU

EMU -0.267 -0.217 -0.037 -0.312 -0.289 -0.099
(0.024)∗∗∗ (0.023)∗∗∗ (0.024) (0.036)∗∗∗ (0.032)∗∗∗ (0.029)∗∗∗
[0.069]∗∗∗ [0.051]∗∗∗ [0.043] [0.086]∗∗∗ [0.070]∗∗∗ [0.049]∗∗
{0.112}∗∗ {0.096}∗∗ {0.046} {0.123}∗∗ {0.125}∗∗ {0.078}

All Non-EMU CUs 0.814 0.736
(0.065)∗∗∗ (0.065)∗∗∗
[0.277]∗∗∗ [0.272]∗∗∗
{0.417}∗ {0.407}∗

Notes: This table reports estimates obtained from linear specifications that correspond to the PPML
estimates from Table 2 of the main text. Robust standard errors in parentheses. Standard errors
clustered by country pairs in brackets. Standard errors clustered by exporter, importer, and year in
curly brackets. ∗ p < 0.10, ∗∗ p < .05, ∗∗∗ p < .01. See text for further details.
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