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Abstract 
 
We analyze the efficiency of urbanization patterns in a stylized dynamic model of urban 
growth with three sectors of production. Pollution, as a force that discourages agglomeration, 
is caused by domestic production. We show that cities are too large and too few in number in 
uncoordinated equilibrium if economic growth implies increasing pollution (‘brown growth’). 
If, however, production becomes cleaner over time (‘green growth’) the equilibrium 
urbanization path reaches the efficient urbanization path after finite time without need of a 
coordinating mechanism. The results may be generalized to take other forms of congestion 
into account. 
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1 Introduction

There is a widely held concern in the urban economics literature that cities

tend to be too large in equilibrium. In particular environmental pollution

is assumed to be exceedingly high in large cities, expecially in developing

countries (Henderson 1977; Henderson 2002a; Henderson 2002b; Trolley 1979;

Shah and Nagpal 1997; UNFPA 2001; UN-Habitat 2003).1 This becomes

even more of an issue in a dynamic context where economic activity and

urban population grow over time. Yet, urban pollution may either increase

or decrease over time, even in a growing economy. As the extensive literature

on the so-called Environmental Kuznets Curve indicates, the environmental

load with some pollutants, e.g. SO2, increases with output at early stages

of economic development, but may ultimately decrease again (e.g., Andreoni

and Levinson 2001, Egli and Steger 2007, Grossman and Krueger 1995, Lieb

2002; 2003, Plassmann and Khanna 2006, Stern 2004). Recent evidence

shows increasing urban air quality in California despite increasing traffic due

to an increasingly ‘green’ technology (Kahn and Schwartz 2008). In light of

these observations the question is, if cities are currently too large compared

to their optimal size, will this problem become worse or better in the course

economic development?

Seminal contributions by Henderson (1974,1988) provide a theoretical

foundation of the concern that cities are too large in equilibrium. He showed

that in an uncoordinated migration equilibrium, cities are too few in num-

ber and too large each, because individual households and firms have little

incentives to found new cities and rather stay in inefficiently large existing

cities. As a solution to this coordination failure Henderson proposed that

1With strong migration restrictions, as the prevail in many regions in China, cities may

on the other hand be inefficiently small (Au and Henderson 2006).
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powerful land developers should be given the right to found new cities and

receive all land rents households and firms pay in the new city. The com-

petition of such land developers for tenants would then lead to efficient city

sizes. Current dynamic theories of urban growth assume that such powerful

land developers exist and ensure efficient city sizes (Black and Henderson

1999, Rossi-Hansberg and Wright 2007, Henderson and Venables 2009). In

contrast to this view, Helsley and Strange (1997) argue that in practice de-

velopers only have limited power and thus may fail to implement efficient

city sizes. But also the very diagnosis has been challenged that without co-

ordination equilibrium city sizes are inefficient. In a model of two regions

with an exogenously growing total population, Anas and Xiong (2005) show

that an efficient population distribution over two cities may emerge without

developers if there are positive externalities between cities.

In this paper, we re-examine the question of whether and under which

conditions city sizes are inefficient without coordination in a dynamic context.

For this sake, we develop a simple and analytically solvable model of urban

growth. Growth is driven by human capital accumulation, and an endogenous

number of cities forms as the result of (aggregate) increasing returns to scale

in urban production. The force that limits city sizes in this model is (local)

urban pollution, resulting as an unwanted joint product of urban production.

The pollutants we have in mind include air pollution with particulate matter,

which is of high economic importance (e.g. Muller and Mendelsohn 2009,

Kahn 2006). Other congestion externalities associated with commuting or

crime could be incorprated easily in our framework. Unlike other theories our

model can explain a decreasing number of cities even in a growing economy.

This is the case when pollution decreases, such that equilibrium city sizes

increase.
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Our main result is that cities may be of efficient sizes or inefficiently large

in an equilibrium development path, depending on the nature of economic

growth. If economic growth is accompanied by increasing pollution, cities

are inefficiently large in the uncoordinated equilibrium. Under conditions

of ‘green growth’, with decreasing pollution, city sizes in the uncoordinated

market equilibrium become efficient. This, however, does not happen imme-

diately, but there is a hysteresis effect. It takes a sufficiently large reduction

of pollution, and, correspondingly, a sufficiently long (but finite) interval in

time over which pollution is reduced, until the efficient urbanization pattern

is reached.

The next section develops the model of urban growth. In Section 3 we

consider a city in isolation and derive results on optimal urban environmental

policy and how the citizens’ well-being depends on the city’s population size.

Section 4 contains the dynamic analysis of the whole urbanization pattern,

and derives the equilibrium and Pareto-efficient paths of urban growth. In

the final Section 5 we summarize our results and discuss how they can be

extended to take other forms of congestion explicitly into account.

2 A simple model of urban growth

We consider a small open economy that trades a primary resource and a

final consumption good on world markets at given prices. The price of the

resource is normalized to unity, the price of the consumption good is P . At

these prices, the primary resource and the consumption good are also traded

between cities within the economy. By contrast, intermediate goods that

are used to produce the final consumption good are non-tradable and can

be used only within the city where they are produced. One may imagine
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the intermediate goods as specific sub-contracted production services that

are provided locally. Thus, we neglect transport cost for the consumption

good and assume that transport cost are infinite for the intermediate goods.

Transport costs are important to consider if one is interested in global pol-

lutants for example by greenhouse gases (Gaigné et al. 2012), but they are

not in the core interest when studying the effects of local pollution.

The economy is divided into a large number M of regions. In each re-

gion i = 1, . . . ,M , a city could possibly exist. A city, in our model, is a

region that is inhabited by a minimum number of (urban) residents. While

the number of regions is exogenous, the number of cities is an endogenous

variable of particular interest. In a city, two sectors of production exist: an

industrial sector which produces the final consumption good and a small and

medium-sized enterprises (SME) sector with a large variety of firms. Each

firm in the SME-sector produces a particular variety of the intermediate

good, using the resource and sector-specific human capital.

To operate a business in the SME-sector, one unit of sector-specific human

capital has to be employed at a rental rate of ri. In addition, for each unit

of output, αi > 0 units of the resource are consumed. Hence, a firm’s total

costs of producing x units of output are:

Ci(x) = ri + αi x (1)

The industrial sector in city i uses a composite Xi of intermediate goods and

specific human capital Hi to produce a quantity Yi of the final consumption

good with a technology described by the production function2

Yi = Hµi
i X1−µi

i , (2)

2We allow all technological parameter values to be region-specific.
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where Hi is the firm’s employment of human capital and

Xi =

 Ji∫
0

xi(j)
σi−1

σi dj


σi
σi−1

(3)

is the aggregate of a mass Ji of intermediate input varieties with quanti-

ties xi(j). The different varieties are assumed to be (imperfect) substitutes

in production, i.e. the elasticity of substitution exceeds one, σi > 1.

By symmetry, all firms in the SME sector will produce the same quan-

tity xi(j) ≡ xi of output. As every firm needs one unit of human capital

input, the mass of varieties equals city i’s endowment with human capital

specific to the SME sector, Ji = Ki. Aggregate output thus is

Yi = Hµi
i K

(1−µi)
σi
σi−1

i x1−µii (4)

Urban pollution is an unwanted by-product of the production of interme-

diate goods. Pollution load is assumed to be proportional to the aggregate

input of the primary resource, Ri = αiKi xi (cf. equation 1), with a propor-

tionality factor ei(t),

Ei = ei(t)Ri = ei(t)αiKi xi. (5)

Given the technology of production, in particular (2), it is possible to abate

emissions by substituting human capital for intermediate goods. It is however

not possible to ‘export’ pollution, as intermediate goods cannot be traded

between cities.

We assume an exogenous ‘pollution-saving’ technical progress. That

means, the amount of pollution per unit of resource input decreases over

time, dei(t)/dt ≤ 0. Thus, even with increasing output, local pollution does

not necessarily increase at the same rate. Actually, it may even decrease if
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the rate at which e(t) decreases is large enough. We call such a situation

‘green growth’.

All individuals have the same preferences over consumption ci and envi-

ronmental quality. The instantaneous utility function is

u(ci, Ei) = ci ·
(

1− Ei
Ēi

)φ
(6)

where ci is the amount of goods consumption, Ei is pollution in the individ-

ual’s city of residence. Beyond a maximum tolerable level of pollution Ēi life

at the place of residence is impossible. The parameter φ > 0 is the weighting

factor of environmental pollution in utility.

In each region the consumption good can also be produced by labor input

only, causing no environmental damage. The technology in this ‘traditional’

sector is characterized by constant returns to scale, such that one unit of

labor input generates βi units of output. Without loss of generality, the

regions are ordered according to their productivity, i.e. β1 > β2 > . . . > βM .

Each individual inelastically supplies k(t) units of human capital specific

to the SME-sector and h(t) units of human capital specific to the industrial

sector. We assume that both types of human capital grow at the same rate

θ(t) and both are perfectly mobile across regions.3

Total urban population N(t) is time-dependent, capturing natural growth

(or decline) of urban population. Each individual decides in which city she

lives. We do not consider any migration costs. We use ni ∈ [0, N(t)] to denote

the population of region i, with
∑

i ni = N(t). If an individual in region i

works in the traditional sector, her consumption is βi, as all current income

3It is possible to endogenize the rates of human capital growth and the distribution of

the two types of human capital across the two sectors. We skip this complication to focus

the analysis on the question of efficiency.
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is used for the consumption of goods. If she works in city i her consumption

is ci = (k(t) ri + h(t)wi)/P .

3 Urban environmental policy and optimal

city size

In this section we derive the results about locally optimal environmental

policy and how utility of an individual depends on the population size of the

city she lives in.

Profits in both sectors are zero – in the industrial sector because of con-

stant returns to scale (cf. Equation 2), and in the SME-sector because of free

entry. Hence, total revenues equal total cost, P Mi = riKi+wiHi+αiKi xi.

Aggregate capital stocks are Ki = ni k(t) and Hi = ni h(t). Hence, per capita

consumption is equal to the value of net output per urban worker, which is

equal to the value of gross output minus the value of imported resource in-

puts:

ci =
P Yi − αiKi xi

ni
. (7)

Using (4), we can express per-capita consumption as a function of the city’s

population and aggregate resource input Ri:

ci(t) =
1

ni

((
d(t)n1+ψi

i

)µi
R1−µi
i −Ri

)
(8)

where ψi = 1−µi
µi

1
σi−1 is a measure for the degree of increasing returns to scale

in urban production and di(t) = P
1
µi α

− 1−µi
µi

i h(t) k(t)ψi is a measure for the

level of economic development in city i.

In order to focus on the potential inefficiencies that arise from the migra-

tion process we assume that an urban government internalizes the external
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effects from pollution. For this sake, the locally optimal level of pollution

is determined given the urban population size ni. This level of pollution is

found by solving the problem

max
Ri

vi = max
Ri

{((
di(t)n

1+ψi
i

)µi
R1−µi
i −Ri

) (
1− ei(t)Ri

Ēi

)φ}
From the first order condition for this optimization problem, we obtain the

condition4(
di(t)n

1+ψi
i

)µi
=
(
R̂i(ni)

)µi 1

1− µi
Ēi − ei(t) (1 + φ) R̂i(ni)

Ēi − ei(t)
(

1 + φ
1−µi

)
R̂i(ni)

. (9)

Given the population of city i the efficient level R̂i(ni) of input of the pol-

luting resource is implicitly given by equation (9). The locally optimal level

of resource input is monotonically increasing with urban population from

R̂i(0) = 0 to lim
ni→∞

R̂i(ni) = Ēi/(ei(t) (1 + φ
1−µi )) (see Appendix A.2).

Using (9) in the utility function, we obtain utility under environmental

policy as a function of the city’s population alone,

vi(ni) =
1

ni

((
di(t)n

1+ψi
i

)µi (
R̂i(ni)

)1−µi
− R̂i(ni)

) (
1− ei(t) R̂i(ni)

Ēi

)φ

.

(10)

The following result states how utility depends on the city’s population size.

Result 1. If σi > 2, and when pollution is at a locally optimal level, utility

has a unique interior maximum at a population size of

nopt
i (t) =

(
Ēi

ei(t) di(t)

ψi

(φ+ ψi + φψi) (1− µi (1 + ψi))
1
µi

) 1
1+ψi

(11)

Furthermore, utility vi(ni) tends to zero for ni → 0 and ni →∞.

The optimal population size decreases with the level of development, d(t),

and with the amount of pollution per resource input, ei(t).

4See Appendix A.1. There we also show that the solution of (9) exists and is unique.
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Proof. see appendix A.3.

Result 1 states that utility in city i is a hump-shaped function of the

city’s population ni. In accordance with intuition, utility is increasing with

population in small cities, because pollution is still small and a larger pop-

ulation generates a higher income per capita due to increasing returns. For

large cities, the increasing environmental damage dominates such that utility

decreases with the city’s population. Utility is maximal at an intermediate

population size (precisely at nopt
i (t)) where increasing returns to scale in pro-

duction and damage costs are in an appropriate balance. This, however,

holds only true if the condition σi > 2 is met, which means that increasing

returns to scale are not too high. Otherwise, utility would be monotonically

increasing with population. We concentrate on the relevant case σi > 2 for

all i in the following.

We assume that technologies are such that in every city utility at the

optimal population size is larger than utility from the traditional sector in

this region for all times, vi(n
opt
i ) > βi for all i = 1, . . . ,M and all t ≥ 0.

The optimal population size nopt
i (t) depends in particular on (i) the state

of economic development (di(t)) and (ii) the amount of polluting emissions

per unit of resource input (ei(t)). As stated in Result 1, the optimal popula-

tion size decreases with di(t). The intuitive reason for this result is that with

a higher level of economic development, increasing returns to scale pay off

already at a smaller population size. Hence smaller and cleaner cities become

optimal. The optimal population size also decreases with ei(t), as the neg-

ative effect of pollution plays a bigger role. Over time, optimal population

may decrease or increase, depending on whether the joint effect ei(t) di(t)

decreases or increases. These dynamics drive the results on the efficiency of

urbanization dynamics derived in the following section. Figure 1 illustrates
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ei(t) = 1, di(t) = 2

ei(t) = 1, di(t) = 1.5

population ni of city i

u
ti

li
ty
v i

ei(t) = 0.5, di(t) = 1.5

ei(t) = 1, di(t) = 1.5

population ni of city i
u

ti
li

ty
v i

Figure 1: Instantaneous utility vi(ni) of an individual living in city i as a

function of this city’s population ni. Parameter specification: µi = 0.5,

σi = 5, φ = 0.5, Ēi = 10.

the properties of the utility function vi(ni) and how they depend on di(t) and

ei(t).

4 Efficiency of urbanization dynamics

In this section we study the efficiency of urbanization dynamics. We thereby

do not consider a single city in isolation, but how the economy’s urban pop-

ulation is distributed across cities. We focus on stable equilibrium urbaniza-

tion patterns, which we define as follows:

An equilibrium urbanization pattern {n1, . . . , nm} with ni > 0 for i ∈

{1, . . . ,m} is a distribution of urban population N(t) over m < M cities

such that (i) every urban resident lives in one of the cities,
∑m

i=1 ni = N(t),

(ii) utility is the same in all cities

vi(ni) = vj(nj) for all cities i, j ∈ {1, . . . ,m} (12)

11



and (iii) no urban resident has an incentive to move to a village,

min
i∈{1,...,m}

{vi(ni)} ≥ βm+1 (13)

An equilibrium urbanization pattern {n1, . . . , nm} is stable if migration of a

small number dn of people creates an incentive to move back to the equilib-

rium urbanization pattern

vi(ni − dn) > vj(nj + dn) for all cities i, j ∈ {1, . . . ,m} (14)

From these definitions and Result 1, we immediately have the following

result:

Result 2. An equilibrium urbanization pattern {n1, . . . , nm} with ni > nopt
i (t)

for all i ∈ {1, . . . ,m} is stable.

Hence, an urbanization pattern is stable if all cities are larger than opti-

mal. The intuitive reason for this is that if there was a movement from one

of the large cities to another one, the latter would increase further while the

former would decrease. Because the larger city would become more polluted,

and the smaller city would be come cleaner, this would create an incentive to

move back to the original equilibrium. This result holds irrespective of how

much too large the cities are compared to the optimum.

In general many stable urbanization patterns may exist. The set of all

stable equilibrium urbanization patterns we denote by Ω. In formal terms Ω

is the set of all {n1, . . . , nm} ∈ Rm
+ with m ∈ {1, . . . ,M} for which (i)

∑
i ni =

N(t), (ii) vi(ni) = vj(nj) for all i, j = 1, . . . ,m, (iii) min
i∈{1,...,m}

{vi(ni)} ≥ βM−m

and (iv) ni > nopt
i (t) for all i ∈ {1, . . . ,m}. Out of these stable equilibrium

urbanization patters, one is Pareto efficient.

Result 3. Pareto efficient is the urbanization pattern {n1, . . . , nm?} with

m? = max {m ∈ N |{n1, . . . , nm} ∈ Ω}.
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Proof. Consider an urbanization pattern {n1, . . . , nm̃} ∈ Ω with m̃ < m?.

Since v′i(ni) < 0 for all i = 1, . . . , m̃, the pattern with m? cities which are

smaller each involves a higher level of utility. Hence, a pattern with m̃ < m?

may not be a Pareto optimum.

It is a matter of history which of the many stable urbanization patterns

actually prevails. In order to study this history and the efficiency of urban-

ization involved, we consider three stylized phases of growth.

1. a ‘Malthusian’ phase with Ṅ(t) > 0, while ḋi(t) = 0 and ėi(t) = 0 for all i.

During the ‘Malthusian’ phase, total urban population grows, while hu-

man capital per capita and the amount of emissions per unit of resource

input remain constant.

2. a ‘brown growth’ phase with ḋi(t) > 0, while Ṅ(t) = 0 and ėi(t) = 0 for

all i.

During the ‘brown growth’ phase, total urban population is constant,

while human capital per capita in creases. It is a phase of ‘brown growth’,

as the emissions per unit of resource input stay constant, which leads to

increasing aggregate pollution (see Appendix A.2).

3. a ‘green growth’ phase with d
dt

(ei(t) di(t)) < 0 for all i, while Ṅ(t) = 0.

During the ‘green growth’ phase, human capital increases, but emissions

per unit of resource input decrease in such a way that the joint effect implies

a ‘greening’ of the production process on aggregate. Total urban population

stays constant.

In the following we study how the number and sizes of cities, utility, and

the efficiency of the emerging urbanization pattern evolve over time.

In order to derive clear-cut results, we assume that all cities have the

same technology, i.e. µi = µ, σi = σ, ei(t) = e(t), αi = α for all i = 1, . . . ,M .

Thus, m? identical cities with populationN(t)/m? each are an equilibrium ur-
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banization pattern that is stable if N(t)/m? > nopt(t) (cf. Result 2) and that

is Pareto-efficient if m? = max {m ∈ N |N(t)/m ≥ nopt(t)} (cf. Result 3).

We first consider the ‘Malthusian’ phase. During this phase, the shape of

the utility function vi(ni) is unchanged. In particular nopt is constant during

this phase. We assume

v(2nopt) > β2, (15)

with nopt given by (11). The implications of this assumption will become

apparent below.

The dynamics during the Malthusian phase is driven by the fact that

the growing urban population has to be accommodated. Consider an initial

situation without any city. Because the traditional sector in region 1 is most

productive, the whole urban population will be concentrated there.5 The

increasing urban population will continue to work in the traditional sector

of region 1 until it becomes profitable to start an industrial sector, which

happens at time t0 when v(N(t0)) > β1. The additional urban population

will move in the city in region 1 until this city’s population has grown to

a level n1 at which utility in this city is equal to utility in the region with

the second most productive traditional sector, i.e. v(n1) = β2. Note that

by Result 1 the equation v(n) = β2 has two solutions, n1 and n1, with

n1 < nopt < n1.

At the point in time where N(t) is marginally higher than n1, utility

is marginally higher for individuals working in the traditional sector in the

unpolluted region 2. Thus, the city stops growing and further urban popula-

tion will move to the traditional sector of region 2 rather than to the polluted

city in region 1, until region 2’s population has reached the size n1 where an

5The assumed productivity differences in the traditional sectors coordinate migration,

as workers would be indifferent between regions with identical productivities.

14



population n1 of city 1

v(n1)

u
ti

li
ty
v i

Nn1N/2noptn10

β2

n1 n2

v(n1) v(n2)

u
ti

li
ty
v i

Nn1noptN/2noptn10

β2

Figure 2: Illustration of the dynamics in the Malthusian phase with one city

(left panel) or two cities (right panel). In the right panel, the population

of city 1 (city 2) is measured from left to right (from right to left). The

filled circle marks a stable equilibrium, while the open circles mark unstable

equilibria.

industrial sector becomes profitable. This situtation is illustrated in the left

panel of Figure 2. If β2 is small enough (i.e. n1 is large enough) and ψ < 1,

this new situation is unstable (see Appendix A.3): inhabitants of the large

polluted city will move to the emerging clean city, as illustrated in the right

panel of Figure 2. This process will increase utility in both cities, but the

utility increase is stronger in the smaller city, thus the incentive for migrat-

ing there persists. Finally, population will be equally distributed over two

cities. Condition (15) guarantees that both of these cities have population

sizes larger than nopt, as it implies n1 + n1 > 2nopt. The new equilibrium is

stable (cf. Result 2).6

6We can not exclude the possibility that there is another stable equilibrium with one

smaller and one larger city. Considering the right panel of Figure 2, this would correspond

to a situation where the two curves intersect more than three times. However, with
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With further growing population, the two cities will grow until they reach

population sizes n2 < n1 at which utilities are equal to utility in the region

with the third most productive traditional sector, i.e. v(n2) = β3. With

growing urban population an industrial sector in region 3 will eventually

become profitable. Again, this situation is not a stable equilibrium, and

individuals will move from the two larger cities to the smaller one until all

three cities have reached the same population size, which all are larger than

nopt by assumption (15).7

The growth pattern continues with m cities as illustrated in Figure 3,

panel (a). Between t1 and t2, the number m of cities is constant, and utility

decreases. At time t3, the previous urbanization pattern becomes unstable.

Let nm and nm be the two solutions of the equation v(n) = βm+1. Total

urban population then is mnm, and further urban population moves to the

traditional sector in region m+1. A new city emerges when total population

is N(t) = mnm +nm, as from then onwards the industrial sector in region m

becomes more profitable than the traditional sector. Finally a stable urban-

ization pattern with m + 1 cities with population sizes larger than nopt will

emerge. It will remain stable, until total urban population has reached the

size N(t) = (m+ 1)nm+1, and the increasing urban population would prefer

to move to the traditional sector in region m+ 2.

The following result summarizes these results how the number of cities

and utility evolve over time during the ‘Malthusian’ phase.

increasing N(t), the two curves move apart and eventually the asymmetric equilibrium will

disappear, while the symmetric equilibrium still exists and is stable. Thus, an asymmetric

equilibrium can only exist for small N(t): as N(t) grows big enough, eventually only the

symmetric equilibrium is stable.

7Note that this condition implies 2n2 > 3nopt, or equivalently, v( 3
2 n

opt) > β3, because

v( 3
2 n

opt) > v(2nopt) > β2 > β3.
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(a) (b)

t3t2t1
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βm+1
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(c)
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Figure 3: Illustration of the stylized phases of urban growth: (a) Malthusian

growth, (b) brown growth, and (c) green growth. The parameter values are

as in Figure 1, with d(t1) = 1.5 and e(t1) = 1.0 in all sub-figures. In sub-

figure (b), d(t2) = 2.0 and d(t3) = 2.5. In sub-figure (c), e(t2) d(t2) = 0.6,

and e(t3) d(t3) = 0.3.
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Result 4. Assume that (15) holds. During the ‘Malthusian’ phase, (i) the

number of cities (weakly) increases. (ii) Utility weakly decreases in every

existing city, v̇i(ni) ≤ 0 for all i during phases where the number of cities is

constant, while utility increases at points in time when a new city emerges.

So, if people move one by one (Anas and Xiong 2005 call this “laissez-

faire”), with growing urban population the equilibrium number of cities will

increase, but stay as small as possible. The lack of coordination in the laissez-

faire outcome involves too few cities that are too large each, compared to the

Pareto-optimum. This is the result typically found in the literature (e.g.

Henderson 1974). We next analyze the effects of economic growth, assuming

that urban population is constant.

During the ‘brown growth’ phase with constant urban population the

current urbanization pattern remains stable: as nopt(t) decreases, v′i(ni) < 0

remains true. Hence, the stability properties of the urbanization pattern are

unchanged. As utility increases there is also no incentive to move to a village,

where utility is constant. In conclusion, the number of cities and population

of every city are constant. Utility increases with d(t), as ∂vi(ni)/∂d(t) > 0

(cf. Equation 10). As the optimal population size decreases (Result 1), the

difference between the (constant) actual and the (decreasing) optimal popu-

lation increases. This argument is illustrated in Figure 3 (b). We summarize

these findings as the following result:

Result 5. During the ‘brown growth’ phase, (i) the number of cities remains

constant, (ii) utility increases in every city, v̇i(ni) > 0 for all i, and (iii) the

difference between the equilibrium and optimal population increases in every

city, d/dt (ni − nopt(t)) > 0.

Economic growth is beneficial even if it causes increasing pollution, as

utility increases. Due to increasing pollution and the lack of a coordinating
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mechanism, however, economic growth is not as beneficial as it potentially

could: the difference between the actual and the optimal population size

increases over time. Hence, also the ‘opportunity cost’ of remaining in the

stable urbanization pattern increase over time. The picture is quite differ-

ent in a phase of ‘green growth’ where pollution per unit of resource input

decreases at a sufficiently high rate.

During the ‘green growth’ phase utility increases due to both increasing

efficiency of labor, as human capital per capita increases, and decreasing

pollution. The second characteristic of the ‘green growth’ phase is that opti-

mal population size increases (cf. Result 1). Hence, the current urbanization

pattern with m cities remains stable until N(t)/m < nopt(t). Then, the ur-

banization pattern is unstable and the number of cities decreases by one,

such that the number of cities is m − 1 = max {m ∈ N |N(t)/m ≥ nopt(t)},

i.e. the new pattern is a Pareto optimum. The argument is illustrated in

Figure 3 (c). From t1 to t2, the number of cities is constant, and utility

increases. At time t3, the previous urbanization pattern becomes unstable,

and a city vanishes. Thus, we have the following result.

Result 6. During the ‘green growth’ phase, (i) the number of cities (weakly)

decreases, (ii) utility increases in every city, v̇i(ni) > 0 for all i, and (iii)

the difference between the equilibrium and optimum population decreases in

every city, d/dt (ni − nopt(t)) ≤ 0. If the ‘green growth’ phase continues long

enough, the Pareto-efficient urbanization pattern is reached and sustained.

The result shows that ‘green growth’ is beneficial in two respects: first,

utility increases. Secondly, the coordination failure present in the phases

of ‘Malthusian’ growth and ‘brown growth’ disappears and the efficient ur-

banization pattern is reached and sustained after finite time even in the

uncoordinated equilibrium development.
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5 Conclusion and discussion

In this paper we have studied the dynamic development of urbanization pat-

terns in a dynamic model of urban growth. Equilibrium and optimal city

sizes are determined by the balance between increasing returns to scale as

a positive feedback mechanism that favors agglomeration and environmental

pollution as a negative feedback mechanism that discourages agglomeration.

Our main result is that cities may be of efficient sizes or inefficiently large

in an equilibrium development path, depending on the nature of economic

growth. If economic growth is accompanied by increasing urban pollution,

cities are inefficiently large and too few in number in the uncoordinated

equilibrium. Thus, the equilibrium growth path is not efficient. This result

confirms the concern that urbanization patterns may involve inefficiently

large cities. The outcome is remarkably different from previous findings in

the case of decreasing pollution, i.e. if there is ‘green growth’: First, our

model predicts a decreasing number of cities in a growing economy if urban

pollution decreases over time. Then, the equilibrium city sizes increase and

the economy’s population will distribute over a smaller number of cities.

In such a situation of ‘green growth’ the equilibrium city sizes and number

approach the efficient urbanization pattern, i.e. the uncoordinated market

equilibrium becomes efficient.

The policy conclusion is that a continuous reduction of polluting by-

products of production will ultimately lead to an efficient urbanization pat-

tern. The point in time when the efficient urbanization pattern is reached

can be observed, as it is the moment when the number of cities starts to

decline. Between the moment when urban pollution starts to decline and the

moment when the efficient urbanization pattern is reached there is a time

lag, however. Accordingly it may require some degree of patience until under
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a ‘green growth’ policy the efficient urbanization pattern is reached.

We have not explicitly considered any other types of congestion, but it is

straightforward to generalize the model in this respect. For example, if hous-

ing needs space, and production takes place in a central business district to

which workers have to commute, aggregate commuting costs would increase

with the city’s size. In such a setting, the phase of ‘green growth’ would

correspond to an improving transport infrastructure associated with signif-

icantly decreasing commuting costs. Ultimately, an efficient urban growth

path would be obtained without need for a coordinating mechanism.

A Appendix

A.1 Derivation of Equation (9)

The first-order condition for the problem to maximize vi over Ri is

dvi
dRi

= (1− µi)
((
di(t)n

1+ψi
i

)µi
R−µii − 1

) (
1− ei(t)Ri

Ēi

)φ
+
((
di(t)n

1+ψi
i

)µi
R1−µi
i −Ri

) φ ei(t)

Ēi

(
1− ei(t)Ri

Ēi

)φ−1
= 0.

Rearranging leads to (9). Note that (9) has a unique solution, as the right-

hand side is monotonically increasing in Ri from zero at Ri = 0 to infinity

as Ri → Ēi/(ei(t) (1 + φ
1−µi )).
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A.2 Proof that efficient resource use increases with

population

Taking the total differential of equation (9) yields

di(t)
µi (1 + ψi)µi n

(1+ψi)µi−1
i dni

=

µi R̂µi−1
i

1− µi
Ēi − ei(t) (1 + φ) R̂i

Ēi − ei(t) (1 + φ
1−µi ) R̂i

+
R̂µi
i

1− µi
ei(t)φ

µi
1−µi Ēi(

Ēi − ei(t) (1 + φ
1−µi ) R̂i

)2
 dRi

(A.1)

Both the term in front of dni on the left hand side and the term in front of dRi

on the right hand side are strictly positive. Hence, dRi/dni > 0. For Ri = 0,

we have ni = 0; for Ri → Ēi/
(
ei(t)(1 + φ

1−µi )
)

, we have ni → ∞ from

condition (9). A similar argument leads to the conclusion that R̂i increases

if di(t) increases, while ni and ei(t) remain constant.

A.3 Proof of Result 1

By the envelope theorem, the total derivative of utility with respect to pop-

ulation equals the partial derivative of utility with respect to population.

Hence,

dvi(ni)

dni
=
∂vi(ni)

∂ni
= − 1

n2
i

((
di(t)n

1+ψi
i

)µi
R1−µi
i −Ri

) (
1− ei(t)Ri

Ēi

)φ
+
R1−µi
i

n2
i

µi (1 + ψi)
(
di(t)n

1+ψi
i

)µi (
1− ei(t)Ri

Ēi

)φ
= − 1

n2
i

(
(1− µi (1 + ψi))

(
di(t)n

1+ψi
i

)µi
R1−µi
i −Ri

) (
1− ei(t)Ri

Ēi

)φ

=
1

ni

−1 +
µ (1 + ψ)

(
d(t)n1+ψ

i

)µ
R1−µ
i(

d(t)n1+ψ
i

)µ
R1−µ
i −Ri

 v(ni) (A.2)
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Thus, utility has an interior maximum, if 1 − µi (1 + ψi) = 1 − µi + 1−µi
σi−1 =

1−µi
σi−1 (σi − 2) > 0. Otherwise, utility would be monotonically increasing with

ni due to very strongly increasing returns to scale. Assuming σi > 2, the

condition for an interior extremum is

(1− µi (1 + ψi))
(
di(t)n

1+ψi
i

)µi
= Rµi

i (A.3)

Using (9) this condition becomes

1− µi (1 + ψi)

1− µi
Ēi − ei(t) (1 + φ)Ri

Ēi − ei(t) (1 + φ
1−µi )Ri

= 1 (A.4)

We rearrange this equation to obtain Ri as follows

(1− µi (1 + ψi))
(
Ēi − ei(t) (1 + φ)Ri

)
= (1− µi)

(
Ēi − ei(t)

(
1 +

φ

1− µi

)
Ri

)
(A.5)

⇔ µi (φ+ ψi + φψi) ei(t)Ri = µi ψi Ēi (A.6)

⇔ Ri =
Ēi
ei(t)

ψi
φ+ ψi + φψi

(A.7)

Plugging into (A.3), we obtain the result (11).

To show that (11) is a maximum of utility, we consider the second derivative

of v(ni). In the following we use the abbreviation

Γ ≡
µ (1 + ψ)

(
d(t)n1+ψ

i

)µ
R1−µ
i(

d(t)n1+ψ
i

)µ
R1−µ
i −Ri

(A.8)

Note that Γ = 1 for ni = nopt. Thus, v′(ni) = v(ni) (Γ− 1)/ni and

v′′(ni) = − v(ni) (Γ− 1)

n2
i

+
v(ni) (Γ− 1)2

n2
i

+
v(ni)

ni

dΓ

dni
(A.9)
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Using (9), we obtain the following(
d(t)n1+ψ

i

)µ
R1−µ
i =

ΓRi

Γ− µ (1 + ψ)
(A.10)

Γ = (1 + ψ)
Ē − e(t) (1 + φ)Ri

Ē − e(t)Ri

(A.11)

Ri =
Ē

e(t)

1 + ψ − Γ

(1 + ψ) (1 + φ)− Γ
(A.12)

For ni → 0, we have Ri = 0, thus from (A.11) that Γ = 1 + ψ > 1. For

ni →∞, we have from (A.8) that Γ = µ (1 + ψ) < 1.

The derivative of Γ with respect to ni is

dΓ

dni
= −(1 + ψ) e(t)φ Ē

(Ē − e(r)Ri)2
R′i(ni) (A.13)

Using this in (A.9) shows that v′′(nopt) < 0. Further, from equation (9),

ni =

(
Ri

d(t)

) 1
1+ψ

 1

1− µ
Ē − e(t) (1 + φ)Ri

Ē − e(t)
(

1 + φ
1−µ

)
Ri

 1
µ (1+ψ)

Thus,

v(ni) =
Ri
ni

µ Ē−φ

1− µ

(
Ē − e(t)Ri

)1+φ
Ē − e(t)

(
1 + φ

1−µ

)
Ri

=
µ (1− µ)

1−µ (1+ψ)
µ (1+ψ) d(t)

1
1+ψ

Ēφ
R

ψ
1+ψ

i

(
Ē − e(t)

(
1 + φ

1−µ

)
Ri

) 1−µ (1+ψ)
µ (1+ψ) (

Ē − e(t)Ri
)1+φ

(
Ē − e(t) (1 + φ) Ri

) 1
µ (1+ψ)

.

This shows that v(0) = 0 and lim
ni→∞

v(ni) = 0. Similarly,

v′(ni) =
v(ni) (1− Γ)

ni

= (1−Γ)
µ (1− µ)

2−µ (1+ψ)
µ (1+ψ) d(t)

2
1+ψ

Ēφ
R
ψ−1
ψ+1

i

(
Ē − e(t)

(
1 + φ

1−µ

)
Ri

) 2−µ (1+ψ)
µ (1+ψ) (

Ē − e(t)Ri
)1+φ

(
Ē − e(t) (1 + φ) Ri

) 2
µ (1+ψ)

Thus, lim
ni→0

v′(ni) =∞ for ψ < 1 and lim
ni→∞

v′(ni) = 0.
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