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1. Introduction: Production Sets and the Efficiency Concept

The concept of efficiency in production has received a precise meaning
in economics when Koopmans and Debreu introduced in 1951 the
production set notion in the theory of production. A production set, in their
terminology?, is a collection Y of pairs of vectors (x, u) — called hereafter
production plans — where x = (x1, ..., Xj, .., Xn) is @ vector of quantities of I
inputs and u = (uy, ..., #j, ..., Un) @ vector of quantities of | outputs, that have
the property of being feasible ones. By “feasible" it is meant that the
quantities are such that the output bundle « can physically be produced by
making use of the input bundle x. In formal terms,

Y = {(x,u)|xe R.,ue R, ;(x,u)is feasible } .

The usefulness of the set notion for our purposes comes from the fact
that it brings along two further notions, namely (i) that of the boundary (or
frontier) of the set, and (ii) that of the interior of the set. This indeed permits
one to distinguish between production plans that belong to the interior of
the production set, which are called inefficient, and those that do belong to
(a particular part of) the frontier, and are called efficient.

Inefficiency so defined yields itself to measurement once the property of
belonging to the interior is translated in terms of a distance — that is, a real
number — between the production plan under consideration and the
boundary of the set. In this setting, efficiency of the plan amounts to zero
distance, and inefficiency to a strictly positive distance.

2. Constructing Alternative Reference Production Sets From Observed
Data: The Postulates Behind FDH, DEA and Other Methodologies

In most empirical analyses of efficiency, the analyst must construct a
representation of the production set from the data he has available on input
and output quantities, because the set itself, being an abstract concept, is not

2 In BANKER, CHARNES and COOPER 1984, and PETERSEN 1990 the term used is that of
“"production possibilities set'. FARE, GROSSKOPF and LOVELL 1985 and GROSSKOPF 1986
prefer to call a production set a "technology". In this paper, we take all these expressions as

synonyms.



observable. He then uses the set's frontier to measure the efficiency of the
activities reported by the data. GROSSKOPF 1986 aptly calls "reference” set?
the production set so constructed from empirical data. In so doing, any
production plan that is included in the production set and is not observed
necessarily results from some postulate, explicit or implicit, as to its
feasibility. Hence, depending upon which postulates are retained, a different
reference set is constructed.

Formally, let
Y, ={(x*,u*)|x* €R],u* eR!, k=1,2,...,n}u{(0",0")} (1)

denote a set of n actually observed production plans, to which the origin of
the input-output space is added by convention* (0! and 0/ are the I- and J-
dimensional null vectors); for brevity we call Y, the observations set or the
data set. Let also Y(Y,) denote a reference production set constructed from
Y,. If the following two postulates’ are used:

Postulate (i): Every observed production plan belongs to the constructed production
set, and

Postulate (ii): Every non observed production plan, that is weakly dominated in
inputs and/for in outputs by some observed production plan also belongs to the
constructed production set,

then a "free disposal hull (FDH) reference production set", Yy , constructed
from Y, can be written as follows

h 1 U ! I
Yiiompys { [:] eRM [:] g [:h] + Z‘ui[g{ }— p v{;ﬂ]

(x",u")eY,, p 20, v,20,i=1,..1,j=1,..,] } (2)

3 in her words, "reference technology".

4 The reason for including the origin in Y, will appear below, in particular when we shall
discuss the DEA case.

5 We expand here on a formulation originally used in DEPRINS, SIMAR and TULKENS 1984,
and further developed in TULKENS 1993.



where el denotes an I-dimensional zero vector with the ith component
equal to 1 and similarly ¢ denotes a J-dimensional zero vector with the jth
component equal to 1.

The first postulate makes the ensuing methodology of efficiency
measurementé a deterministic one. The methodology would indeed be
stochastic if this belonging property were formulated in probabilistic terms.
Postulate (ii) is the one of free disposal of inputs and of outputs, from
which the name of the constructed reference set is derived’. We express it
here in terms of "dominance”, a term that for our present purposes may be

defined as follows:

Definition: In (2), observation (xh, uh) weakly dominates (x, u) in inputs if
Ji:p, >0, and in outputs if 3 j:v, > 0.

The values taken by the variables y, (denoting disposal of the inputs) and
v, (disposal of the outputs) thus express the free disposal assumption.

Notice that an equivalent way to write (2), useful for what follows, is:

N Y e

"

(*,u*)eY, 7' e{0, }h=1..,n D 7=l

h=1
p20i=1,.1, vjaﬂ,j=1,‘..,1 } (3

In the DEA literature, efficiency is measured by referring to production
sets similarly constructed from the data, and using a third postulate in
addition to the two mentioned above. This third postulate differs, however,
depending upon which DEA model is used: the one of BANKER,

6 The actual computation of efficiency is dealt with in section 4.

7 This terminology was introduced in efficiency analysis by THIRY and TULKENS 1992 (p.
46). In private communication with one of the authors, Professor Cooper expresses a
preference for "efficiency domination”, which had already used in an unpublished note
(BOWLIN, BRENNAN, CHARNES, COOPER and SUEYOSHI 1984). Notice that free
disposal is defined, here as in DEBREU 1959 (p. 42) as a property of the production set,
rather than of market conditions — which we find irrelevant — as in the discussion by
BANKER, CHARNES and COOPER 1984 (p. 1082).



CHARNES and COOPER 1984, the one of DEPRINS and SIMAR 1983 or the
original one of FARRELL 1957 and CHARNES, COOPER and RHODES 1978.
Let us consider each of these in turn, in that chronologically reverse order.

Postulate (iii-1): Every non observed production plan that is a convex
combination of production plans induced by postulate (i), excluding the origin,
and by postulate (ii), also belongs to the constructed production set.

Using the above notation, postulates (i), (i) and (iii-1) induce a reference
production set that reads:
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to be called the "convex free disposal hull" of the data. Because the origin is
excluded from the data set, the constructed set does not contain the origin
either. The piecewise linear frontier of this set is often interpreted as
exhibiting "variable" returns to scale (VRS). As BANKER, CHARNES and
COOPER 1984 clearly show, this is only true however in the special sense
that returns are increasing (I) only in the lower range of the inputs up to
some point, and are decreasing (D) beyond. As there are other forms
conceivable of variable returns®, we think it more accurate to use "ID"
rather than "VRS" in the subscripts used to identify the set constructed
here.

Postulate (iii-2): Every non observed production plan that is a convex
combination of production plans induced by postulates (i) and (ii) also belongs
to the constructed production set.

8 Typically, the FDH sets just considered may exhibit any form of returns to scale: returns are
are thus in some sense "more" variable than in the ID case. This is analogous to the situation
with parametric frontiers, where the flexibility of translog functions allows for more
variability in the returns than ID type of production functions.

9 e.g. by FORSUND 1992, or LOVELL 1993 (pp. 29-30).



Wih this postulate (iii-2), postulates (i) and (ii) induce a reference

production set that reads:
u . u - ut i o' I el
Yoea-co(Y,) ={ [x]ERi r L} - E'}fkl:xh] A ;'uf[e:j] B g;vf 01' i

(x*u")eY,, ¥"20,h=1,..,n, Zy"=1,

h=1

p,20,i=1,.1, v}.zO,j:L...,}}. (5)

Here too, the constructed set is the convex free disposal hull of the data, but
the fact that it contains the origin implies that its (piecewise linear) frontier
can only exhibit constant returns (in the lower range of the inputs, up to
some point) and then decreasing returns to scale (which is what DEPRINS
and SIMAR 1983 (p. 136) aimed at introducing). Hence our "CD" specification
in the identifying subscripts.

Postulate (iii-3): Every non observed production plan that is a linear combination
of production plans induced by postulates (i) and (ii) also belongs to the

constructed production set.

In our notation, the reference production set Ypgs.c constructed from Y,
with postulates (i), (ii) and (iii-3) reads as follows:

et |- £ 2] )

(=t u')eY,, Y20,h=1...n,

#,20i=1,..1, v,20,j=1,..,] } (6)

Because of the proportionality allowed by the weights of the linear
combinations, this set is a cone, to be called the "free disposal cone"
constructed from the data. As well noted by both FARRELL 1957 and
CHARNES, COOPER and RHODES 1978, the linearity of its frontier implies
that it exhibits constant returns to scale, hence our subscript "C".



It can easily be seen!? that for a given data set Y,,

Yo ek il &Y

FDH DEA-ID DEA-CD DEA-C" [7)

This means that the postulates (i) through (iii-3) have been stated in order
of increasing strength, this term being understood as referring to the
importance of the parts of each reference set that are not made of observed
points. Formally, the relative strength of the postulates is expressed by the
alternative restrictions put on the weights % whereby the observations are
combined, on the sum of these weights, and on the convention to include
or not the origin in the observations set.

The convexity assumption, expressed in or implied by the postulates (iii)
that induce some form of DEA, deserves a special further comment. The
above exposition of the FDH methodology clearly shows that it can be
dispensed with, without loosing the economically essential element of
efficiency analysis, namely a well defined reference production set. Hence,
the question of whether this assumption should be retained in this area
becomes an essentially empirical one.

The non necessary character of convexity in efficiency analysis has found
a further confirmation in the recent contribution by PETERSEN 1990, who
introduces two other kinds of non convex piecewise linear production sets,
different from FDH. It can be shown that these reference production sets
also derive from stronger postulates than (i) and (ii), among which some
form of proportionality. They lie somehow in between the FDH and the
DEA-C reference sets.

3. Constructing Reference Production Sets From Alternative Time-
Related Observations Subsets

3.1 Panels

The n observed production plans referred to in the above definition of
the set Y, are most naturally thought of as a cross-section, i.e. plans

10 A diagrammatic presentation of these inclusions is given in TULKENS 1993, pp. 185-186.



achieved by different firms!l, each one indexed by k and all observed at the
same point in time. Alternatively, the n production plans may be a time
series of successive such plans realized by a single firm, the index k then
standing for a time index. When these two situations are combined, Y, is a
panel. Two indexes are then better associated with each observation: k to
denote the firm, and t to denote the point in time when the observation is
made. An observation now reads (xkt, ukt) and the data set is described as

YT = (4, uf) 2% R, u R, k=1,2,...,m; £=1,2,...,m}U{(0",0")}, (8)

where the superscripts K and T refer to the sets of firms and of observation
times, respectively, and with the same convention as in (1) as to the origin.

The presence of the time dimension in the data introduces a new variety
of ways of evaluating the efficiency of observed productive behavior.
Indeed, besides the necessity of choosing one among the several alternative
reference production sets that we have seen in the previous section, there
may arise reasons to construct it not from the full data set ¥,”, but instead
from only alternative subsets of it, that we shall call “reference observations
subsets”. In TULKENS 1986 (section 6) the following possibilities were
described!? in this respect:

(a) A first one is to construct a reference production set at each point in
time ¢, from the observations made at that time only. In this case, a different
reference observations subset, denoted as

Y::g={(xﬂ’u“)|k=]’2’___’H}U{(OI,G})} (9)

is used at each point in time t = 1,2,...,m. Over the whole observation period,
a sequence of m reference production sets is constructed, one for each time .
We call "contemporaneous” each of these production sets and denote them
as

11 or more generally "decision-making units", as nicely formulated by CHARNES, COOPER
and RHODES 1978.

12 With an empirical application to monthly data, extending over 12 months, from the
Belgian Post Office, with p = FDH.
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YY), B 1250,

where the subscript p stands for the alternative sets of postulates that imply
FDH, DEA-ID, -CD or -C reference production sets.

Contrary to those that will be defined next, successive production sets so
constructed, even if they are of the same type p, are essentially unrelated to
one another; that is, they may or may not overlap in any possible way.

(b) A second possibility is to construct a reference production set at each
point in time t also, using the observations made from the point in time s=1
up until s=t. The reference observations subsets at each t = 1,2,...,m being here
denoted as

YEOD = ((x* u¥) |k =1,2,...,m;5=1,2,.... 54 0{(0",0")} (10)

m successive reference production sets are thereby constructed, different of
course from those under (a) above, that we call "sequential " and denote as

YO, falim

Here too, the subscript p stands for FDH, DEA-ID, -CD or -C, according to
which postulates of section 2 are retained for their construction. However,
whatever the shape thus obtained for these sets, since

t
Y:[I,fl = YKS’

sml ©

successive sequential reference production sets have the property of being
nested into one another, that is:

Yp(Y:”"*“) o YP(Y:(“"’), foreveryt=1,2,..,m-1 (11)

(c) A third possibility is to construct a single production set from the
observations made throughout the whole observation period. The
reference observations subset is here simply Y}, as defined at the
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beginning of this subsection. We call the resulting reference production set
"intertemporal” and denote it as

24 s

With p = FDH, DEA-ID, -CD or -C, its shape depends once more upon the
postulates of section 2 that are retained. Notice that

L K(1,m)
(2 & ¥ (e v,

that is, intertemporal production sets are also the sequential production sets
associated with the observation(s) made at the last point in time in the data

set.

3.2 Time Series

Further reference observations subsets can be specified by treating each
unit k separately, thereby singling out k-specific time series. This yields:

(a) "k-specific sequential production sets”, denoted asY (Y,""), t = 1, ..., m, and

derived at each f from the observations set consisting of the time series of
the activities of the sole unit k from s =1 up tos = t; and

(b) "k-specific intertemporal production sets”, denoted as YP(Y:T). There is in

this case a single time series of m observations of firm k. Notice that the
indices k and T are here reversed with respect to K and ¢ in the definition of
Y, Kt given at the beginning of this section.

Efficiency analysis of time series observations sets has been dealt with by
FARE, GRABOWSKI and GROSSKOPF 1985 in terms of sequential
production sets with p = DEA-ID, and with an application to yearly data (one
output, four inputs) extending over twenty years on Philippine agriculture.
Both the sequential and the intertemporal approaches were used in THIRY
and TULKENS 1992, and pursued in TULKENS & VANDEN EECKAUT 1991 in
the same spirit as that of the present paper, with applications to monthly
data of an urban transit firm in Belgium extending over several years. We
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shall therefore limit ourselves in what follows to the panel situations
covered by cases (a)-(c) above.

3.3 Window Analysis

Finally, a connection should be made between the above and what is
called "window analysis", as initiated by CHARNES, CLARK, COOPER and
GOLANY 1985. Window analysis is in fact a special case of (b). Indeed, a
(time) window of size 56{1,2,...,1'; r<m} at time t is defined as a subset of
adjacent points in time T"={r|r =t,t+1,.. t+s;t<sm— s} whose
observations are used to construct an intertemporal reference production
set, valid for the time period [, t+s] only. Successive such windows, defined
for t=1, 2,..., m-s, yield a sequence of reference production sets, that we
might call "locally intertemporal”.

These sets are not nested however, as it is the case with sequential
analysis in (b) above. In contrast with this last methodology, whose spirit is
to assume that what was feasible in the past remains feasible for ever, the
treatment of time in window analysis is more in the nature of an averaging
over the periods of time covered by the window. For the size of the
window, as well as for the fact that part of the past is ignored, it seems to be
hard to find more than an ad hoc justification.

To summarize this section, for measuring the efficiency of observations
(xkt, ukt) in a panel, there is a double variety of ways to proceed: first,
according to the postulated production set used as reference — FDH, DEA-
ID, -CD or -C, and second according to the selected observations subset used
to construct the production set — contemporaneous, sequential,
intertemporal, or "window". This makes for 16 possibilities! While the best
choice to be made between them surely varies with the empirical
application to be dealt with, their main interest lies perhaps in the fact that
they also pave the way for the progress and regress analyses that are to
follow in sections 5 and 6.
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4. Mathematical Programming Formulations of Efficiency Measurement
From Contemporaneous, Sequential or Intertemporal Frontiers.

We now move to the techniques of numerical measurement of efficiency
when the data are in panel form. The main purpose is to show that
measurement can be made in all cases by means of mathematical
programming techniques that are by now well established for computing
efficiency from statistical data on inputs and outputs. This provides a
unifying framework for the various approaches defined in the preceding

two sections.

We use a presentation similar to the one in TULKENS 1993, which is in
turn close to those of PETERSEN 1990, GROSSKOPF 1986 and many others.
To the usual distinction between input and output orientations we find it
useful to add the graph orientation proposed in FARE, GROSSKOPF and
LOVELL 1985 (chap. 5)13, and we call efficiency “degrees” the resulting
measures. These will be contrasted below (see section 6) with what we shall

call there "indexes”.

4.1 Alternative Reference Observations Subsets

To allow for a flexible use of the various reference observations subsets
we have defined, we wish to define a further symbol, Y,, to denote for any
set Y, the set of indexes whereby its observed elements are identified (thus,

ignoring the origin). In the case of double indexes as with panel data sets, Y,
refers to index pairs; for instance, for Y = Y:‘T as defined in (7),

Y, ={(kn)*, u*) ex T},

For any observation (xk!, ukt), its input, output and graph efficiency
degrees, relative to an FDH reference production set and to some reference
observations subset Y,, are determined from the values 8%, 1" and 8§,
respectively, of the objective functions at the optimal solutions of the
following mixed integer programs:

13 The input and output measures are radial ones whereas the graph orientation measure is a
hyperbolic one .
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Problem 1.1 (input orientation)

i min _ 6% , subject to
8%,y Ahs)e¥,

> rutzu j=1..]

(hs)e¥,

e%xf - Y Y*xF20, i=1..,1

(hsel,

Zy"’=1 and yY*e{0,1}, (ms)e¥,.

(hs)e¥,

Problem 1.2 (output orientation)

( max }1’“ , subject to
AM ™ (hs)eT,
Kt kb _ hs, hs o P
Mt~ 3 S0 =l
hs ks ki 2
[sz YoxoSx s F=dd

Y y*=1 and y*e{0,1}, (hs)eY,.

(hs)e¥,

Problem 1.3 (graph orientation)

min 8" , subject to

{84 7™ (e, |

ﬂ-u ke hs .

3% - Y rturt<0 =1,
(he}e ¥,

Sl w y e o, =il
(hs}e¥

Zy"’:l and y*e€{0,1}, (s)e¥,.

(hs)&¥y

where

|

(a) ,={(s)fx ) e Y}
or

(b)

or

()

~I

= {(hs)‘(x"’,u""} € Yf“'”}

=l

L ={hefx" ) e YIT,

In these problems we have 0" <1, A% >1and 6% <1, respectively
because in problem 1.1, =y"=1, y’“ =0V(hs) = (kt) is always a feasible
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solution; similarly in problem 1.2, A% =y" =1, y* =0V(hs)# (kt) is also a
feasible solution; and in problem 1.3, 8" =y*=1, y* =0V(hs)=(kt) is a
feasible solution. Therefore,

— if (a) applies, the numbers EC(k;fpH)=6" , EC(;FDH)=[A""]" and
EC ,(k;FDH)= 8", all three < 1, measure the contemporaneous FDH-
efficiency degrees, respectively in input, in output and in the graph
measure, of observation (xkt, ukt) ;

— if (b) applies, the three numbers ES(k;FDH)=6"" , E;(kt;FDH)=[A""]"and
E}, ,,(k;EDH) = 8", all <1, measure the sequential FDH-efficiency degrees,

respectively in input, in output and in the graph measure, of this

observation; and

— if (c) applies, the numbers E!(k;FDH)=6" , E,(k;FDH)=[A"]"and
E/, ,,(k;FDH) = 8", again all <1, measure the intertemporal FDH-efficiency
degrees, in input, in output and in the graph measure, of the same

observation.

To cover all the observations in the panel, n xm problems, i.e. one for
each pair (kt), are to be solved in cases (a) and (b), in each one of the input,
the output and the graph orientations; in case (c), only n problems are
involved in each orientation, i.e. one for each unit k.

4.2 Alternative Reference Production Sets

Problems 1.1 to 1.3 are all formulated for gauging the efficiency of an
observatjon relative to an FDH reference production set as defined in (3).
However, if in either one of these problems, the last line is replaced by :

Y y*=1, and ¥*20, (hs)e¥, (12)
(hs)eY,
the efficiency degrees in input, output and graph are those relative to DEA-
ID production sets as described by (4). We denote them as
El(kt;DEA - ID) , E(kt;DEA - ID) and E|, , (k;DEA-ID), respectively, with the
superscript r = C, §, or [ according to whether (a), (b) or (c) applies.

If instead of line (12) the following is used:
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Y Y*<1, and y*20, (s)e¥, (13)

(hs)e¥,

the efficiency degrees obtained are those relative to the DEA-CD reference
production sets defined in (5), that we denote as
EZ(kt; DEA - CD) , E} (kt;DEA - cD) and Ej, , (kt;DEA -CD). Notice that the fact that
the origin was included in (5) and excluded from (4) is reflected here in the
weak inequality vs. the equality with respect to 1 that is imposed in (13) and
(12), respectively, on the sum of the weights 7" whereby the observation
(kt) is expressed as a convex combination of other observations.

Finally, replacing (13) by
'}"“ 20, (hs)e ‘1_’0 (14)

implies assuming that the reference production set is of the DEA-C type as
defined in (6), i.e. the smallest Farrell cone containing the data. The
efficiency degrees are then naturally denoted by
El(kt;DEA - C) , Ej(kt;DEA - C) and E[, ,,(kt; DEA-C).

Of course, the choice of the alternative observations sets referred to with
(@), (b) and (c) is also offered when anyone of these three alternative forms
of DEA is used.

For computing the solutions of these mathematical programs there exist
today appropriate algorithms and computer codes. In this respect, it should
be mentioned that in spite of the integrality constraint that makes problems
1.1-1.3 mixed integer ones, they are in fact much simpler to solve than the
linear programs obtained when any of the constraints (12), (13) or (14) are
introduced. Indeed, an algorithm of complete enumeration, described in
TULKENS 1993 (pp. 189) and consisting essentially in pairwise dominance
comparisons of all input-output vectors in the data set, does the job!4.

We refer to this simple algorithm because it points to an important
difference in the logic that lies behind FDH vs. DEA methodologies. The
role of the integrality constraint is indeed essentially to identify a dominance

14 A computer code for large panel data sets, allowing for comparisons of FDH results with
those obtained with each one of the DEA variants, and operating on Macintosh is currently
being prepared by the second author.
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relation between observed production plans. On the one hand, an
observation is declared "efficient" — and considered as lying on the
boundary of the reference production set — if it is undominated:
undomination, belonging to the frontier and efficiency are thus synonyms
in FDH methodology. On the other hand, an observation is declared
"inefficient", i.e. it lies in the interior of the set, if it is dominated by one or
several other ones; and in this case the mixed integer program identifies a
"most dominating" observation that serves as a reference to compute the

eficiency degree, either in input or in output.

By contrast, the linear programs used in DEA seek to compute a distance
(in input, in output or graph) with respect to the frontier of a convex
envelope of the data. While dominance plays also some rdle in identifying
this envelope, the additional requirement of convexity induces the
possibility that undominated observations be declared inefficient because
they do not lie on the convex envelope of the data.

5. Measuring Progress And Regress From Frontiers Shifts
5.1 Progress And Regress With Nonparametric Frontiers

Over the time period covered by a panel, the question naturally arises
whether the boundary of the reference production set can shift. The
analyst's answer to this question is contained in the reference observations
subset he decides to select from within the panel data he has available: (i) at
one extreme, if he uses the full data set to construct a single intertemporal
production set, he makes the assumption of no shift at all; (ii) at the other
extreme, if he uses at each t the contemporaneous observations only, to
construct contemporaneous production sets, he is answering the question
in the affirmative, by allowing the reference production sets at each point in
time to be completely different from one another, without there being a
priori any relation between them; and (iii) with the construction of
sequential production sets, which are also different from one another over
time, there is postulated some form of dependence between these sets,
formalized by the property that they are nested. The dependence consists in
assuming that "what was possible in the past remains always possible in the
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future". This amounts to allowing only for outward shifts of the frontier
over time, that is, enlargements of the constructed production possibilities
set.

In economics, beginning with SOLOW 1957, the notion of "progress"
— more specifically called "technical progress" — has for a long time been
associated with outward shifts of production frontiers. Symmetrically,
inwards shifts refer to "regress”. While this literature deals essentially with
parametric production functions, there is no reason why these notions of
progress and regress could not be extended to shifts of non parametric
representations of the boundary of production sets. It is indeed not only a
natural complement to non parametric efficiency measures, but also an
inescapable one when the data involve time. Our purpose in this section is
therefore to provide suitable concepts and methods for measuring frontier
shifts of nonparametric frontiers.

Starting with the remark that observations inducing shifts of a frontier
are by definition lying at some distance away from where this frontier was
before these observations were made, it follows that measuring this distance
is precisely what a measure of progress or regress should do. For this task,
the techniques of efficiency measurement are of direct use, as we shall show
presently. Frontier shifts can indeed be gauged by programming models that
are somehow mirror images of those used to gauge efficiency; and we shall
show how to compute "progress-regress degrees”, just parallel to the
"efficiency degrees" considered so far. The methods vary, however,
according to the postulated reference production set, i.e. FDH or DEA.

5.2 Defining And Measuring Progress And Regress With FDH Frontiers
a) Definitions

As was suggested above, a logic of dominance — more than one of
envelopment — governs the construction of FDH production sets as well as
the formulation of the ensuing efficiency measurement. To be consistent
with that, the description of shifts of the frontier of these sets should be
done in the same spirit. We therefore propose the following concepts.
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Definition 1: an observation (xkt, ukt) is said to induce "progress” if it is (i)
undominated at time t, and (ii) dominating one or several observations, made
at some time s <t and found undominated at s.

Since undomination is the same as belonging to the frontier, the distance
between the observation made at time ¢ and one of those (appropriately
chosen if there are several of them) undominated made at the earlier time s
provides a measure of the outward frontier shift locally achieved by the
former. Time s as used here will henceforth be called "reference time". In
many recent applications, s is taken as t-1, but it need not be so in all cases.

Definition 2: an observation (xkt, ukt) is said to induce “regress” if it is (i)
undominated at time t, and (ii) dominated by one or several observations,
made at times s <t tand found undominated at s

As above, the distance between the observation at time t and one of those
made earlier (appropriately chosen if there are several of them) provides a
way to measure the (local) inwards frontier shift induced by the former.

These definitions are incomplete however, to the extent that they do
not specify the observations reference sets with respect to which the above
domination-undomination properties are considered. In correcting for that,
when this specification is introduced the following distinction needs to be
made. On the one hand, if domination-undomination at times t and s < ¢
are specified with respect to Y and Y, respectively, progress and regress
are defined in terms of a relation between the two contemporaneous frontiers
that these observations subsets induce; call them "contemporaneous
progress and regress'.

On the other hand, if domination-undomination are specified with
respect to Y and Y***, progress and regress should be defined in terms
of a relation between the two sequential frontiers that these observations
subsets induce, and be called "sequential progress and regress". Sequential
regress is however a logical impossibility: indeed, going back to the
definition, if an observation is sequentially undominated at time ¢, it cannot
be dominated by any observation made at s < t. Thus with sequential
reference sets, only progress can ever occur. What would be interpreted as
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regress with contemporaneous reference sets is in fact treated as inefficiency
in a sequential context!5.

Bearing this distinction in mind, we now turn to how to compute
degrees of progress or regress, with FDH reference sets.

b) Measurement With Contemporaneous FDH Frontiers.

For any observation (xk, ukt) to be characterized vis-a-vis the
contemporaneous frontier at reference time s, proceed according to the
following five steps (stated explicitly only for input measures; to alleviate
this text, the parallel procedures for output and graph measures are given in
the Appendix):

Step 1.- Compute first the FDH efficiency in input of (xkt, ukt) according to
problem 1.1 above, with Y, = Y:“ as reference observations subset.

Step 2.- If (xkt, ukt) is found inefficient, it is not a frontier observation and
thus cannot be used for frontier shift measurement; the computation is
therefore terminated as far as observation (xk, ukt) is concernedl6. If (xkt,
ukt) is found efficient, go to step 3.

Step 3.- Consider Yf,'(x;FDH), i.e. the subset of observations in Y:“ that were

found FDH input efficient at reference time s, and compute the optimal
solution of the following

15 In the context of nonparametric efficiency analysis of time series, the above "progress"
notion was formulated first in THIRY and TULKENS 1992 (section 4, pp. 56-57), but only for
sequential observations subsets. Indeed in that context, contemporaneous efficiency is
trivially achieved by all observations (since there is only one at each ), making the progress
as well as the regress measures from contemporaneous production sets not meaningful.

16 In spite of being inefficient, observation (xkf, ukt) might well lie outside of the reference

production set constructed from the observations subset Y:f’(x;FDH ) to be defined in the

following step 3: the observation itself is then in progress vis-d-vis the frontier at time s, and
this progress can also be measured by the procedure that follows; this measure is however not
one of a frontier shift.
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Problem 2.1
max __ 6%, subject to
{o". v, (et }
Zy"’u;" suf,j=1,...,]
(hs)e¥,
ext — Y yExF <0, i=1,..1
Y7y*=1 and 7" e{0,1}, )€Y,
(hs)e¥,
where

Y, ={(hs)s <t; (", u*) e YE wrm} U {(KD)}. (15)

For this problem again, the values 6" = Y =1, y® =0V(hs) # (kt) of the
variables are always a feasible solution. Therefore, one has 6" > 1 for the
value of the objective function at the optimum. Call this value
Pf(h,s;FDH), a short notation for denoting the "progress degree (P) of

observation (kt )relative to an FDH frontier at time s, measured in input
(x) from contemporaneous data (C)".

If PS(kt,s;FDH) > 1, no further computation needs to be done as far as
observation (xk, ukt) is concerned. Progress is indeed measured by this number
in terms of the proportion of how much more of all\7 inputs unit k at time t

would have used if it had used the same input bundle as the unit it dominates
most (in input) in Y®. In figure l.a, such a value of P{(k,sFDH) is

illustrated by the ratio 0B/0A. If Pf (kt,s;FDH) =1, go to step 4.

Step 4.- With PS(k,s;FDH) = 1, there is no progress, but there may be regress.
To find that out, compute the optimal solution of Problem 1.1 above, with
Y, defined as in (15). Here, one has 6 < 1 (since as stated there,
6" = y¥ =1, y* =0V(hs) # (kt) is always feasible) and call RS(k,s;FDH) that

value of the objective function at the optimum.

RS (kt,s;FDH) < 1 measures regress, in terms of the fraction of the actual input

usage made by unit k at time t that was used at time s by the unit that
dominates k most (in input). On figure 1.b, RS(k,s;FDH) is illustrated by the

17 This is indeed a radial measure.



ratio 0B/0A. With this value the computation is also terminated. If
RE (kt,s;FDH) = 1, go to step 5.
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Progress and regress with contemporaneous FDH frontiers

Step 5.- Finally, if PS(k,s;FDH) = RS(kt,s;FDH) =1, neither progress nor regress
prevail: the frontier observation (xkt, ukt) is neither dominating nor
dominated by any of the frontier observations at s and there is therefore
no frontier shift. This completes the progress vs regress characterization of
observation (xkt, ukt).

Applying the above procedure to all observations in Y yields a
complete description of the frontier shift achieved at time t. Figures 2.a and
b show two typical cases: in the former, one of the two reference sets
contains the other; in the latter, the two sets only partially overlap,
exhibiting regress for low values of the output and progress for large ones.

kt
: YoulY o)y Ym(YE )
ks YFDH(Y o ]
YFDH{Y o )
F [
(0] X < (0] b o
Figure2.a Figure2.b

Alternative shifts of contemporaneous FDH frontiers



In comparison with efficiency measurement, we notice three
differences in the evaluation of progress vs. regress:

(i) Progress vs. regress may require up to three computations for each
observation, namely those described at steps 1, 3 and 4.

(ii) The elements of the reference observations subsets used in the
programming models of steps 3 and 4 are characteristically the observations
that make up the frontier at time t-1 — plus (xkt, ukt) itself which ensures
that these problems always have a solution. In problems 1.1-1.3, the
reference observations subsets used were containing only observations

made at time f.

(iii) In step 4 the problem whose solution measures regress actually has a
structure identical to that of problem 1.1, designed to measure efficiency;
only the reference observations subset is different. But this is only natural,
since regress amounts to inefficiency vis-a-vis the the frontier at t-1. By
contrast in step 3 the problem 2.1 that measures progress is quite different
from problem 1.1, but it is somehow a mirror image of it with the operator
max substituted for min, and all inequalities reversed. Again, this is natural
since the dominance relation that is sought for is in the reverse order
compared with the one involved when efficiency is measured.

c) Measurement With Sequential FDH Frontiers.

Similar computations can be done for measuring progress with
sequential frontiers as defined in section 3. In this case, however, the
reference time s can only be {-1. Fot the rest, the steps to be applied to each
observation (x*t, ukt) are only slightly modified as follows:

Step 1: Use Y, = Y as reference observations subset.

Step 2: Unchanged.

Step 3: Consider Yf,“"‘”(x;;DH), as the subset of observations found FDH
sequentially input efficient at time t-1, and compute the solution of
problem 2.1 with Y, defined as Y, ={(hs)j(x™,u*) e Y XD prn U (k)
Call P(k,t-1,FDH) (where the superscript S stands for "sequential”) the

value of the objective function at the solution. If Pf(.i:t,t—I;FDH)b'l, it
+
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measures progress, in the same way that Pf(kr,t -1;FDH) would do, and the
computation is terminated. If P’(ki,t-1;FDH) = 1, go to step 4.

Step 4: With P3(k,t-1,FDH) = 1 there is no progress. Since there can be no
regress with sequential reference production sets of this type, the
observation (xkt, ukt) is only sequentially efficient. Its characterization is
thereby completed.

Repeating the procedure for all elements of Y provides a complete
characterization of the sequential frontier shift between t-1 and t. A
graphical illustration is given on Figure 3. It shows that progress has a
"local” character, in the sense that the whole frontier does not necessarily
shift. This is typical of the nonparametric approach in its sequential form!8,
quite in contrast with the description of progess with the parametric
methods alluded to in section 5.1.

Figure 3

Local FDH progress
5.3 Measuring Progress And Regress With DEA Frontiers

With DEA, the logic of envelopment by means of the boundary of a
convex set prevails. This implies that progress and regress are to be
described by shifts of that boundary per se, more than by referring only to the
observations themselves, as is the case with dominance on which FDH
rests. As a formal definition of frontier shift is hardly necessary in this case,
we directly proceed to the computational procedures.

18 Also encountered by THIRY and TULKENS 1992 in their efficiency analysis of time series.



a) Measurement with Contemporaneous DEA Frontiers

The procedure is basically similar to the one proposed above for FDH
frontiers. However, specific problems arise at some points, that entail
important differences. In this exposition we account for the fact that DEA
can take on different forms according to the assumed returns to scale by
using as before the index p = (DEA-ID, DEA-CD, or DEA-C}. For an
observation (x*f, uk), to be characterized in input terms:

Step 1.- Compute first its DEA efficiency according to problem 1.1, with the
last line replaced by (12), (13) or (14) according to the value chosen for p
(returns to scale option), and with Y, = Y:' as reference observations

subset.

Step 2.- If (xk, ukt) is found inefficient, i.e. not a frontier observation at time
t, the computation is terminated as far as this observation is concerned. If
it is found efficient, go to step 3.

Step 3.- Consider Y (x;p), i.e. the subset of observations in Y that were
found efficient in input at reference time s according to the same returns
to scale option p, and compute the optimal solution of problem 1.1 with

Y= {(hs)ls <t (x",u"™)e Y:,’(x;p)}. (16)

and the last line replaced by (12), (13) or (14) according to the value chosen
for the returns to scale option p .

If a solution exists!?, one of three cases can occur:

— If one has 6> 1 for the value of the objective function at the
optimum, call it PS(kt,s;p). It measures the progress achieved by
observation (xkt, ykt) over the DEA-p frontier at time s (ratio 0B/0A on
figure 4.a).

19 1t was spotted by FARE, GROSSKOPF, LINDGREN and ROOS 1989 that there may not
exist a solution to problem 1.1 with (16), when the constraints (12) or (13) are used. We return
to this point in step 4, in comment (ii) and in Section 5.4 below.
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— If one has 6%'< 1, call it RE(kt,s;p); it measures regress vis-a2-vis the
DEA-p frontier at time s (ratio 0B/0A on Figure 4.b).

— Finally, 8" =1 denotes absence of frontier shift, i.e. the observation
(xkt, ukt) lies on the frontier at s.
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Progress and regress with DEA contemporaneous frontiers

When one of these three cases occurs, the computation is terminated as
far as observation (xkt, ukt) is concerned. On the other hand if no solution
exists, go to step 4.

Step 4.- If problem 1.1 with (16) has no solution, redefine Y, as
Y, ={(hs)ls <t, (x*,u*) e YS (x;p)} L {(k)} 17)

that is, the same observations subset except that observation (x, ukt) is
now included, and compute now the optimal solution of problem 1.1
with this expression of Y, and with the last line replaced by (12) or (13) in
accordance with the constraint that was used in previous problem . Here,
the value 8" of the objective function at the optimum is > 1, because
y™ =1 for (hs) = (kt), yielding 6" =1 is always a feasible solution for this
form of problem 2.1.

Therefore, as in step 3, if 8“'> 1 for the value of the objective function at
the optimum, call it Pf(kt,s;p), as it measures progress (ratio 0B/0A on
figure 5.a). If 8'= 1, no progress is revealed by the input measure (see
figure 5.b) and observation (xkt, ukt) is only efficient. This terminates the



progress vs. regress characterization of a single observation with DEA-type
reference production sets.

~=n
uT =

Figure5.a Figure 5.b

Progress and efficiency measurement in case of no solution to problem 1.1 with (16)

As it was the case with FDH, applying the above procedure to all
observations in Y yields a complete description of the DEA frontier shift

achieved at time t.

Parallel to our comments above on contemporaneous progress vs.
regress with FDH reference sets, we note here the following:

(i) Progress vs. regress evaluation basically requires only two computations
with DEA because the second one (step 3) directly sorts out between progress
and regress. A third computation is needed only in the case of no solution.
This is however not an exceptional case as will be seen in the next
paragraph.

(ii) The way we propose to get around the non existence of a solution at step
4 deserves special attention. When does this phenomenon occur? Problem
1.1 with (12) or (13) has no solution when the observation (xkf, ukt) to be
characterized is such that 3j: u;' > (m‘g’ [u;"}, that is, when one of the output

quantities of the observation is larger than the largest similar output
reached by some observation in the reference observations set. This is
clearly seen in Figure 5.a: to find a distance in input to the right of
observation (xkt, ukt) by means of problem 1.1 is indeed impossible since the
frontier the problem specifies is abcde. Problem 2.1 with (17), by contrast,
uses as reference the convex set whose frontier is labelled mbdn, of which
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the observation (xkf, uk*) happens to be an eolement. This is why it always
has a solution. This convex set hardly has an economic interpretation,
however. Notice also that in the case depicted on Figure 5.b, the convex set
used by problem 2.1 with (17) is mbqgn, and efficiency but no progress in
input is recorded.

Symmetrically, no solution exists with measures in output when the
observation (xkf, ukt) to be characterized is such that 3i:x¥ < { Pr:;fr\_g {x¥}, that
= o

is, when one of the input quantities of the observation is smaller than the
smallest similar input quantity reached by some observation in the
reference observations set. This is illustrated in Figure 6.a, together with the
solution 0C/0D (revealing progress) provided by the solution of the
equivalent of problem 2.1 in the output orientation (that is, problem 2.2 in
the appendix). Figure 6.b, finally, exhibits a case that combines the two
preceding ones, where a solution to problem 1.1 exists neither in output nor
in input, while progress can be measured by problem 2.1 with (17) and its
equivalent in the output orientation.

|
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Figure 6.a Figure 6.b

Measurement in two further “no solution” cases
b) Measurement With Sequential DEA Frontiers

Using sequential frontiers, the procedure just expounded for
contemporaneous ones is to be modified as follows (recall that only s = t-1 is
valid here as reference time):

Step1:  Use Yy = Y as reference observations subset.

Step 2:  Unchanged.
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Step 3:  Consider Y5"(x;p), the subset of observations found DEA-p

sequentially efficient in input at time t-1, and compute the solution of
problem 1.1 with Y, defined as

Y. = |(hs]{s <t, (x",u") e YOV (x;p)) (18)

instead of (16). If there is a solution, call Pf(k:;p) the value of the objective
function at the solution. If Pf(kt;p)> 1, it measures progress, in the same
way that PS(k,s;p) with s =t-1 would do, and the computation is
terminated. If Pf(kr;;:): 1, go to step 4. If there is no solution, go to step 5.

Step 4: With PS(k;p)= 1 there is no progress, the observation ( xkt, ukt) is only

sequentially efficient, and the computation is terminated.

Step 5: If there is no solution at step 3, redefine Y, in (18) as

Y, ={(hs)s <t, (x*,u") e YK PDixip)} U (kD)) (19)
and compute the solution of problem 1.1 with Y, so defined and the last
line replaced by (12) or (13). The properties of the solution and its
interpretation are as in step 5 of the procedure with contemporaneous
frontiers. The characterization of an observation (xkt, ukt) in terms of
sequential progress with DEA reference frontiers is thereby completed.

Repeating the procedure for all elements of Y provides a complete
characterization of the sequential frontier shift between t-1 and t. A
graphical illustration is given on Figure 7. As we observed with FDH
sequential analysis, it shows the"local" character of the frontier shift. This
particular form of progress was already obtained, in a different context, by
ATKINSON and STIGLITZ 1969 (p. 573) who present an identical diagram.
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Figure7

Local DEA progress
5.4 On Frontier Shift Measures Used In Malmgquist Indexes

We want to conclude this section by comparing our approach to frontier
shifts with the "Malmquist index" recently developed by FARE,
GROSSKOPF, LINDGREN and ROOS 1989 and 1992 (hereafter referred to as
FGLR), also designed to characterize changes over time in productive
activities described by panel data. A basic difference lies in the fact that the
Malmquist index, denoted here as M(k; t-1,t; p) measures the productivity
gain (if M(k; t-1,t; p) > 1) or loss (if M(k; t-1,t; p) < 1) achieved by a given unit k
from time t-1 to time +20 As is well known, productivity is a notion
different from efficiency. However, recognizing the fact that the unit whose
productivity change is to be assessed may be efficient or inefficient (relative
to some reference frontier of type p, to be specified shortly) at either one of
the two observation times, the authors show that the productivity index can
be decomposed into two factors that we presently recall.

The first factor does indeed measure the "efficiency gain or loss" of the
unit from ¢-1 to ¢, that is, in our notation, the extent to which (xkt, ukt) is
closer to or farther away from the frontier of YP{Yf‘} than (xkt -1, yki-1) was

vis-a-vis the frontier of YP(Y:H). Using in each case the computation

prescribed by problem 1.1 above?!, this is measured by the ratio

20 BERG, FORSUND and JANSEN 1991 use alternative points in time s in lieu of ¢-1. The
issues raised by the choice of alternative reference times are of the nature of those arinsing in
choosing a base for any index number.

21 This problem yields a Malmquist index in input; parallel measures in output or graph are
easily defined.
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ES (kt;p)/ES (k- 1;p): a value larger than 1 measures an efficiency gain, a value

smaller than 1 an efficiency loss;

The other factor measures "frontier shift" in the sense that has been
treated here, that is, the extent to which the frontier used to measure the
efficiency of (x*, ukt) has shifted away from the one that has served to
measure the efficiency of (xkt-1, ykt-1). Now this can be measured in two
ways : either from (xkt, ukt) by a ratio sf(h,t—l;p}/sf(h;p), or from
(xkt-1, ykt-1) by a ratio Ef(l'l-l;p)/SS(kt—I,l;p), where the numerators and

denominators are derived as follows from our previous developments:

Sf(kr,t—:.-p)= Pf(kt,tul;p) if a progress-regress evaluation of observation
(xkt, ukt) with respect to the cotemporaneous p-frontier at
time t-1 results in PS(kt,t—1;p)>1;

=RE(kt,t—-Lp) if the same evaluation results in
RS (kt,t-1;p)<1;
=1 if the same evaluation yieldsPS(.)=RS(.)=1;

similarly for Sf(kt— 1,5;p), where t-1 and f replace t and t-1, respectively, in
the previous definition;

and Ef(kr;p) and Ef(h— 1;p) are the efficiency degrees already referred to,
introduced here to correct for the possible inefficiency of the
observations (x, ukt) and (xkt-1, ykt-1),

With this notation, the FGLR decomposition of the Malmquist index
reads2Z:

Mk;t-1,6;p) = (20)

1
ES(kt;p) " SCikt,t-1p)  ES(k-1p) [2
ES(kt-1;p) ESt;p)  SS(kt-1,tp)
Frontier shift as measured by the expression in the square brackets
thus appears as being only a component of productivity as evaluated by the
Malmquist index. The way this measure is done raises two problems,
however. One is the issue of "where" to measure the frontier shift: from the

22 For ease of comparison with the rest of this paper, the formula is presented here in terms
of efficiency and progress-regress degrees instead of the distance functions actually used by
the authors in their original presentation.
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current observation (xkf, ukf) to the frontier of the past i.e. of YP(Y:“") i.e.

the first factor in the square brackets, or from the past observation
(xkt-1, ykt-1) to the frontier of the current reference set YF(Yf'):'.e. the second

factor? The authors' compromising choice is to take a geometric mean of
the two. How is that related with what we have done in the preceding
sections? The other problem is that the authors confine themselves to DEA-
C reference production sets when they need to use both input and output
measures, because with DEA-CD and DEA-ID production sets output and /or
input measures may not exist in certain cases (as recorded with problem 1.1
with (16) above, which is the one they use), and they offer no solution for
that.

On these two issues, we have the following points to make:

(i) Our perspective in the preceding analysis was to measure frontier shift
only, and this appeared not to need, per se, any kind of averaging. Of course,
averaging in the productivity index is only due to the necessity to stick with
the same unit k at times t-1 and f. Our approach just reminds one that
imposing this constraint is not necessary for measuring technical progress
in terms of a frontier shift, and shows how to do it.

(ii) Because problem 1.1 with (16) may have no solution in some important
cases, both FGLR 1989 and 1992 restrict themselves to p = DEA-C reference
production sets. Our present claims in that respect are (1°) that by using FDH
instead of DEA reference production sets, the programming problems
always have a solution, as was seen in subsection 5.2; and (2°) that with DEA
models of all types, the no solution cases can be solved by following what
we propose in step 4 of section 5.3. Admittedly, our solution is in the spirit
of substituting a domination-undomination criterion for the one of convex
envelopment, which may be seen as an inacceptable change of philosophy
within a given evaluation methodology. However we feel that there lies a
strong justification for our proposal in the fact that the no solution cases
always arise in parts of the input-output space where it is not the convexity
assumption that creates the problem but well the free disposal one:
remember indeed that both DEA-CD and ID construct convex free disposal
hulls, and this is the source of the "horizontal" and "vertical” segments in



33

the boundary of the corresponding production sets, as for instance in figures
6a and 6b.

6. Measuring Progress And Regress From A "Benchmark Production

Correspondence"

It must be recognized that either one of the two ways of measuring
progress-regress by frontier shifts, i.e. from contemporaneous or from
sequential frontiers, has important drawbacks. When contemporaneous
frontiers are used, it is hard to avoid arbitrariness in the choice of the
reference time s; and if s is chosen to be always equal to ¢-123, it is
characteristically of short memory: only the last frontier counts, and
whatever progress (or regress) was achieved earlier is not accounted for in
the numerical evaluation at time t With sequential progress, on the other
hand, there is no room for regress, neither conceptually, nor in terms of
measurement. Regress, in this setting, is simply assimilated with
inefficiency because the production frontier is postulated to only move
outwards and not inwards.

To overcome these drawbacks we call here?* upon a new concept,
namely the "benchmark correspondence”. The characteristic of this
approach is to abandon the frontier concept, and to replace it by a special
form of the input-output relation, derived from the dominance notion,
that we call the "benchmark production correspondence”, and by reference
to which both progress and regress will be defined. As a corollary, however,
the distinction between efficiency and inefficiency, understood as belonging
or not to a frontier, fades away since there is no frontier anymore! Hence
our substitution of the word benchmark for those of frontier or hull.

The essence of the approach is to associate with the data not a whole
production set, but instead only a subset of it — technically called the graph
of some correspondence — this subset being not postulated to be a frontier.
The subset is induced from the data in an evolving way, that is, it is

23 1f 5 is chosen < -1, all the intermediary information is ignored.

24 What follows is actually the panel data version of a methodology expounded in greater
detail for time series in our companion paper (TULKENS and VANDEN EECKAUT 1991)
that is entirely devoted to this topic.



gradually modified over time, on the basis of the information revealed by
the observations made at each time t=1,2, ..., m, in a typically sequential
spirit.

At every t, a subset of the observations in the panel is thus singled out,
that we call the "benchmark observations subset at time t". From these
observations, the benchmark correspondence and its graph are defined.
Finally, all observations made at  are characterized in terms of progress or
regress vis-a-vis this benchmark, by means of an index computed by a
procedure very close to the one used before in sequential efficiency and
progress analysis. We shall now describe these three steps more precisely.
Since this is a progress-regress measure, we first specify what is to be done at
time t =1, where there are no earlier observations to compare the
observations (xk1, uk1) with; then we move to any time t > 2.

Stage t =1

Step 1.1: Consider the set Y of the data observed at time 1, and identify by
means of problem 1 the subset YX' of these observations that are
contemporaneously FDH efficient. Denote henceforth this last subset YX!

and call it the "benchmark observations set at time 1".
Step 1.2: With every observation (xk1. uk1) e Yo’;', associate the set

ul ] & [0'] & |[€
CHE

i=1 i
u ut 1 o I el

- .l = i
By R M e S

that is, the set of points in the whole input-output space (thus, non
observed as well as observed points) that neither dominate nor are

1l

D,(x,ut) = Hekj*f
X

1) [u] eR!
x

dominated strongly?5 by (xkt, ukt); in other words, points that are in
"dominance indifference” with respect to (xkf, ukt) — whence the subscript
“i” appended to D. With YL, itself, associate then the set

25 Referring to weak domination in Section 2, an observation strongly dominates another one
in inputs if g; >0V i and in outputif vj >0 V.



D, D, (x*,ut1).
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This set may be seen as the graph (illustrated by the dashed area on Figure 8)
of the mapping

B,:R' = R! :x — U(x) = {uf(x,u) e DY)}

which we call the "benchmark production corresponcence at time 1".

Figure 8

Graph of the BPR correspondence

Step 1.3: Finally, each one of the n observations in Y’ conventionally
receives a numerical progres-regress evaluation — called "BPR index" —
equal to its FDH efficiency degree as computed at step1.1.

General stage t = 2.

Step t.1: At any time t 2 2, consider the data Y and identify its subset of

contemporaneously FDH efficient observations Y. From defining

Kt _ vk K(1,t-1
Yaﬂf = Yu‘: M Di(yoﬂ : J)
we obtain
K(1Lt) _ P iveks
Y(JB —E:{YDB &

which we call the "benchmark observations set for the period (1,t)"



Step t.2: With every observation (xkt, ukt) e YX'", associate a set D,(x",u")
defined as in (21), and with the set Y5 itself associate

Di(YDKB[l,tJ) - D.{xh,nh)

(bjsst;;xh,uh)sv;‘gw !
This set is also the graph of the mapping

B,:R R :x > U(x)= [ul(x,u)e DY)}
i.e. the "benchmark production corresponcence at time t".

Step t.3: Finally, for each one of the n observations (xkt, ukt) in Y a
numerical index of "benchmark progress-regress” — the BPR index — is
computed as follows:

— Solve problem 2.1 above with (15) replaced by

YO = ((hs) | (s, uhs) e YOO } Uf(kt)} &)

i.e. the set of index pairs that denote the elements of the benchmark
observations set at time t 26 and the observation (xf, ukt) itself. One has
6" >1 for the value of the objective function at the optimum. If 8" >1, call
it P_(kt; BPR) and the characterization of observation (xkt, ukt) is terminated,
as this measures the progress (in input) achieved by this observation
relative to the benchmark correspondence at time ¢.

—If 6" =1 in problem 2.1 then move to problem 1.1 and solve it with Y,
also defined as in (22). Here, 6" <1. If 6" <1, call it R (k;BPR) and the
characterization of observation (xkt, ukt) is also terminated, as this measures
the regress (in input) achieved by the observation relative to the same
benchmark.

26 A superscript x or u should be added to these sets to allow for possible differences in their
definition in input or in output terms, respectively. In the text, we stick to our convention of
dealing only with input measures.
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— If 6" =1 in both problems 1.1 and 2.1 " =1, there is neither regress nor
progress achieved by the observation (xkt, ukt) with respect to the
benchmark correspondence at time f, and observation (xk, ukt) belongs to
the benchmark observation subset Y4”. A conventional BPR index equal

to 1 is attached to it.

With the corresponding computation in output terms given in the
appendix this completes our description of progress and regress

measurement by means of a "BPR index".

7. Conclusion

We have presented a wide variety of ways to measure
nonparametrically efficiency, progress and regress from panel data. Yet our
developments show that this variety reduces to two alternatives basic
formal structures : the one of problems 1.1 - 1.3 and the one of problems 2.1
- 2.3. While the former is designed to evaluate efficiency, the latter is
designed to evaluate progress (revealing under way that evaluating regress
is formally identical to evaluating inefficiency, and thus formally belongs to
the category of problems 1.1-1.3).

Nevertheless, this wealth of approches may leave the impression that
in empirical studies, the choice of the most appropriate method must be
quite an intricate one. We would argue, however, that several methods are
better than only a few: our experience is indeed that by analyzing a same
data set in various ways, one gets a much better understanding of what
these data contain, and one finally reaches conclusions that more strongly
founded.



Appendix

1. Progress and Regress Measurement With Contemporaneous FDH
Frontiers

a) Ouput measures

Step 1.- Compute first the FDH efficiency in output of (x, ukt) according to
problem 1.2 above, with Y, = YX as reference observations subset.

Step 2.- If (xkt, ukt) is found inefficient, it is not a frontier observation and
the computation is therefore terminated. If (xk, y*!) is found FDH
efficient, go to step 3.

Step 3.- Consider YX!(u;p), i.e. the subset of observations in Y™ that were

found FDH output efficient at time ¢-1, and compute the optimal solution
of the following

Problem 2.2
min _ A",  subject to
{ot. . 0)e, }
Al - N YR 20,j=1,..,]
(hs)e¥,
DR, bl
{hs]e?,
Z]f" =1 and 7" E{O,l},(hs)e?o
(hs)e¥,
where
Y, ={(rs)fx™, u*) e Y (u; FDH) U {(k0)}. (A1)

Write as Pf(kt) the inverse value of the objective function at the
optimum, that is: PS(kt)=[A*']". Notice that PS(kt) 21, because
A% =yM =1, y* =0V(hs)# (kt) is always a feasible solution for problem
2.2,

If the number PS(kt) is strictly larger than 1, no further computation
needs to be done as far as observation (x¥, uk!) is concerned. Pf(kt} indeed
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measures progress in terms of the proportion of how much more of all
outputs?” unit k at time ¢ produces than if it had made no progress.

Step 4.- If PS(kt) is found equal to 1, there is no progress, but there may be
regress. To find that out, compute the optimal solution of Problem 1.2,
with }_’o defined as in (A.l)above, and write as Rf(kf) the value of the
objective function at the optimum, that is: R{(kt)=A"". Here, one has
RE(kt)<1 since A¥ =y" =1, y* =0V(hs) # (ki) is also always a feasible

solution for problem 2.2.

A value strictly less than 1 for RS(kt) measures regress. This value also

terminates the computation.

Step 5.- Finally, if both PS(kt) and Rf{kt) are found to be equal to 1, neither

progress nor regress prevail: the observation (xkt, uk) is also a frontier
observation at t —1 and there is thus no frontier shift. This completes the

progress vs regress in output characterization of observation (xk, ukt).

b) Graph measures.

Step 1.- Compute first the FDH graph efficiency of (xkt, ukf) according to
problem 1.3 above, with Y, = Y as reference observations subset.

Step 2.- If (xkt, ukt) is found inefficient, it is not a frontier observation and
the computation is therefore terminated. If (xkt, ukt) is found FDH
efficient, go to step 3.

Step 3.- Consider Y;"'(x,u;p), ie. the subset of observations in Y that
were found FDH graph efficient at time t-1, and compute the optimal
solution of the following

27 This is indeed a radial measure.
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Problem 2.3
max 8" , subject to
{8, ™ i1eT, |
uf’ ks i
*.2 Z_y’"u, 20  j=1..]
(hs)e¥,
Sy = ¥yl el
(hs}e¥
Yr*=1 and 7*€{0,1}, (hs)e¥,.
(hs)e¥,
where
Y,= {(hs)|(x"’,u"’} € Yf."'(x,u;FDH)} u{(kt)}. (A.2)

Write as PC,(kt) the value of the objective function at the optimum, that
is: P, (kt)=68". Notice that P (k) 21, because
A =y" =1, y® =0V(hs)#(kt) is always a feasible solution for problem
2.3.

If the number P{ (kt) is strictly larger than 1, no further computation
needs to be done as far as observation (x, uk!) is concerned. P, (kt)
indeed measures progress in terms of the proportion of how much more
of all outputsunit k at time t produces and, simultaneously the
proportion of how much less of all inputs unit k at time ¢ uses than if it
had made no progress.

Step 4.- If P{ (kt) is found equal to 1, there is no progress, but there may be
regress. To find that out, compute the optimal solution of Problem 2.3,
with Y., defined as in (A.2)above, and write as R{,(kt) the value of the
objective function at the optimum, that is: R{,(kt)=8"". Here, one has
RS, (kt)<1 since A" =y" =1, y* =0V(hs)# (kt) is also always a feasible
solution for problem 2.3.

A value strictly less than 1 for RC,(kt) measures regress. This value also

terminates the computation.

Step 5.- Finally, if both PS,(kt) and R{,(kt) are found to be equal to 1,
neither progress nor regress prevail: the observation (xkf, ukt) is also a
frontier observation at t —1 and there is thus no frontier shift. This

completes the progress vs regress in graph characterization of observation
(xkt, ykt),
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2. Progress and Regress Measurement with Contemporaneous DEA

Frontiers

Output and graph measures are obtained from our description in section

5.3 of the computational procedure in input just by making the following

substitutions :

Description of the procedure | Description of the procedure | Description of the procedure
in the input orientation in the output orientation in the graph orientation2®
For... Substitute... Substitute...

Problem 1.1 Problem 1.2 Problem 1.3

Problem 2.1 Problem 2.2 Problem 2.3

Yo (x;p) Y;: (u;p) Y3 (x,u;p)

k" A S

PE(kt,s;p) PE(kt,s;p) PE_(kt,s;p)

RE(kt,s;p) RS (kt,s;p) RS, (kt,s;p)

3. Progress and Regress Measurement from A “Benchmark Production

Correspondence”

Output and graph measures are likewise obtained from our description
in section 6 of the computational procedure in input with the following

substitutions :

Description of the procedure

in the input orientation

Description of the procedure

in the output orientation

Description of the procedure

in the graph orientation

For... Substitute... Substitute...
Problem 1.1 Problem 1.2 Problem 1.3
Problem 2.1 Problem 2.2 Problem 2.3
ekr“ [lii' ]-1 5u'

P, (kt;BPR) P, (kt;BPR) P, (kt;BPR)
R, (kt;BPR) R, (kt;BPR) R, ,(kt;BPR)

28For the graph orientation, problem 2.3 is never used because problem 1.3 always has a

solution.
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