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How efficiently produce elite US universities highly cited papers? 
A case study based on input and output data 

Abstract 
While output and impact assessments were initially at the forefront of institutional 
research evaluations, efficiency measurements have become popular in recent years. 
Research efficiency is measured by indicators that relate research output to input. The 

additional consideration of research input in research evaluation is obvious, since the 
output should be related to the input. The present study is based on a comprehensive 
dataset with input- and output-data for 50 US universities. As input, we used the 
amount of budget, and as output the number of highly-cited papers. We employed 

Data Efficiency Analysis (DEA), Free Disposal Hull (FDH), and two more robust models: 
the order-m and order-α approach. The results of the DEA and FDH analysis show that 
Harvard University and Rice University can be called especially efficient compared to 
the other universities. While the strength of Harvard University lies in its high output 

of highly-cited papers, the strength of Rice University is its small input. In the order-α 
and order-m frameworks, Harvard University remains efficient, but Rice University 
becomes super-efficient. We produced university rankings based on adjusted 
efficiency scores (subsequent to regression analyses), in which single covariates (e.g. 

the disciplinary profile) are held constant. 
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1 Introduction 

The science system has been characterised by the transition from academic science to 

post-academic science for a number of years. “Bureaucratization” is the term used to describe 

most of the processes connected with post-academic science: “The transition from academic 

to post-academic science is signaled by the appearance of words such as management, con-

tract, regulation, accountability, training, employment, etc. which previously had no place in 

scientific life. This vocabulary did not originate inside science, but was imported from the 

more ‘modern’ culture which emerged over several centuries in Western societies – a culture 

characterized by Weber as essentially ‘bureaucratic’” (Ziman, 2000, p. 82). As an important 

part of universities’ commitments to accountability (against the government), research evalua-

tion has assumed a steadily growing importance in the science system. While academic sci-

ence (since its beginnings) has been characterised by the use of the peer review system to as-

sess single outcomes of science (e.g. manuscripts, Bornmann, 2011), post-academic science is 

characterised by the use of quantitative methods of research evaluation. According to Wilsdon 

et al. (2015) there are currently “three broad approaches to the assessment of research: a met-

rics-based model; peer review; and a mixed model, combining these two approaches. Choos-

ing between these remains contentious” (p. 59). Typical metrics are publications and citations 

(National Research Council, 2014). 

A special characteristic of research evaluation in the area of post-academic science is 

the emergence of university rankings. Here, metrics are used to rank the universities in a 

country or worldwide (Hazelkorn, 2011). University rankings have some obvious advantages. 

They offer, for example, a quick, simple, and easy way of comparing universities (world-

wide). The most interested groups in the rankings are students, the public, and governments 

(Wilsdon et al., 2015). However, a lot of critiques have been published in recent years (see 

e.g. Schmoch, 2015) that focus on the methods and arbitrary weightings used to combine dif-

ferent metrics. Daraio, Bonaccorsi, and Simar (2015) cite four points summarizing the main 

criticisms aimed at rankings: mono-dimensionality, statistical robustness, dependence on uni-

versity size and subject mix, and lack of consideration of the input-output structure. 

In this study, we pick up the last point “lack of consideration of the input-output struc-

ture” and set a possible approach of input-output consideration in institutional evaluation to 

discuss (in scientometrics). Since positions in rankings depend on certain context factors 

(Bornmann, Stefaner, de Moya Anegón, & Mutz, 2014; Safón, 2013), rankings should not 

only offer information on the output, but also the relation of input and output. Moed and 
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Halevi (2015) define input indicators as follows: “indicators that measure the human, physi-

cal, and financial commitments devoted to research. Typical examples are the number of (ac-

ademic) staff employed or revenues such as competitive, project funding for research” (p. 

1990). 

If metrics are used that relate output to input (e.g. the number of papers per full time 

equivalent researcher), research efficiency is measured. Thus, this study is intended to explore 

approaches of measuring efficiency of universities. The study follows on from a recent dis-

cussion in the Journal of Informetrics, which started with Abramo’s and D’Angelo’s (2016) 

doubts about the validity of established bibliometric indicators and the comments that ensued. 

Instead, they plead in favor of measuring scientific efficiency. For example, they proposed the 

Fractional Scientific Strength (FSS) indicator, which is a composite indicator that considers 

the total salary of the research staff and the total number of publications weighted with cita-

tion impact (when used on the university level). 

2 Approach of this study 

This study follows the call of Bornmann and Haunschild (2016) and Waltman, van Eck, 

Visser, and Wouters (2016) who propose in a comment on the paper by Abramo’s and 

D’Angelo’s (2016) that scientometricians should try to explore methods and available data to 

measure the efficiency of research. We do this both by using a unique data set and applying 

approaches rarely used in academic efficiency analysis. The former comprises information for 

the top 50 US American universities from the Times Higher Education (THE) Ranking 2015. 

Input is defined by annual budget figures. The output concerns the 1% most frequently cited 

publications in a specific field and given year (Ptop 1%). The focus on these top publications 

is derived from the fact that we focus on elite universities represented by the 50 best ranked 

universities in the THE. Whereas the input which we used is standard in the literature, our 

output variable has never been used before (to the best of our knowledge). 

The most frequently used tool in the academic efficiency literature is the Data Efficien-

cy Analysis (DEA) and variations of this non-parametric approach. The DEA yields an insti-

tutional efficiency score between 0 and 1, where 1 means efficient. However, these non-

parametric approaches have several shortcomings. There is no well-defined data generating 

process and a deterministic approach is assumed: “Any deviation from the frontier is associat-

ed with inefficiency, and it is not possible to take into consideration casual elements or exter-

nal noise which might have affected the results” (Abramo & D’Angelo, 2014, p. 1134). The 
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most serious drawback of the DEA in its simplest form is that it is extremely vulnerable to 

outliers and measurement errors.1 

Thus, we further employ the Free Disposal Hull (FDH), which is less prone to outliers, 

and apply the partial frontier analysis (PFA), which nests FDH and DEA. Specifically, we 

employ the order-m (Cazals, Florens, & Simar, 2002) and order-α (Aragon, Daouia, & Thom-

as-Agnan, 2005) approaches. Here, the sensitivity to outliers and measurement errors is re-

duced by allowing for super-efficient universities with efficiency scores larger than 1. To this 

end, sub-samples of the data are used and resampling techniques are employed. The use of 

four different approaches allows us to validate the robustness of our conclusions. Finally, we 

calculate efficiency scores adjusted for institutional background and research focus. 

There is plenty of literature examining the efficiency of (higher) education institutions. 

Early examples are Lindsay (1982) and Bessent, Bessent, Charnes, Cooper, and Thorogood 

(1983). Worthington (2001) and more recently Rhaiem (2017) as well as De Witte and López-

Torres (2017) provide comprehensive surveys of the literature. In the efficiency analyses of 

higher education institutions, PFA has rarely been used. Bonaccorsi, Daraio, and Simar 

(2006) and Bonaccorsi, Daraio, Raty, and Simar (2007) applied the order-m approach to study 

45 universities in Italy and 261 universities across four European countries, respectively. De 

Witte, Rogge, Cherchye, and Van Puyenbroeck (2013) used DEA and PFA to study the per-

formance of 155 professors working at a Business & Administration department of a Brussels 

university college. Bruffaerts, Rock, and Dehon (2013) used FDH and PFA to study the effi-

ciency of 124 US universities. The authors tried to explain which factors drove the efficiency 

scores. However, they do not provide scores for each university. Gnewuch and Wohlrabe (in 

press) used partial frontier analysis to identify super-efficient economics departments. There 

are a number of studies available in the literature which have investigated efficiency aspects 

in the US higher education system (Agasisti & Johnes, 2015; Cohn, Rhine, & Santos, 1989; 

Harter, Wade, & Watkins, 2005; Laband & Lentz, 2004; Sav, 2012; Titus, Vamosiu, & 

McClure, 2017). 

The paper is organized as follows: it starts by explaining the four statistical approaches 

used in this study for calculating the efficiency scores of the universities. The paper subse-

quently describes the data set and provides some descriptive statistics. In a first step, we cal-

culate efficiency scores for the universities. In a second step, we calculate adjusted efficiency 

                                            
1  There are also parametric approaches available (e.g. the stochastic frontier analysis, SFA), which have several 

disadvantages too. One disadvantage is that they rely on distributional assumptions; a specific functional form 

is required. The potential endogeneity of inputs cannot be accounted for. 
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scores. These scores are adjusted to the different profiles of the universities (e.g. their disci-

plinary profiles). After presenting our results, we discuss the implications of our analysis. 

3 Methods 

3.1 (Partial) academic production frontier analysis 

The main goal of efficiency measurement is to calculate an efficiency score for each 

unit (here: each university). There are two main concepts: (1) input-orientated efficiency, 

where the output is set constant and the inputs are adjusted accordingly; (2) output-orientated 

efficiency, where for a given input the output is maximized. These concepts differ in terms of 

the direction in which the distance of a university from the efficiency frontier is measured. In 

this paper, we resort to input-efficiency and constant returns to scale (CSR). With respect to 

the former point we could also consider output-efficiency as US universities may have control 

over both the inputs (the acquired budget) and the outputs. In our estimation framework we 

cannot test the kind of economies of scale. The partial frontier approaches used in this paper 

assume CSR. Furthermore, the results do not point to evidences of how the production pro-

cess with respect to top-cited publications works.  

We start this section by describing two full production frontier approaches for elicita-

tion of academic efficiency scores: the most commonly used DEA and the less known FDH 

approach. We subsequently outline two PFA: order-m and order-α. Both techniques are gen-

eralizations of the FDH approach, as they nest it. Both approaches allow for the existence of 

super-efficient universities, i.e. universities with efficiency scores larger than one. In section 

3.1.4, we illustrate the four approaches with a simple example. 

We denote the input and output of a university i with x�  and y�, respectively. We con-

sider N universities. The corresponding efficiency score is given by e�. 

3.1.1. Data Envelopment Analysis (DEA) 

DEA was introduced by Charnes, Cooper, and Rhodes (1979). It is a linear program-

ming approach, which envelopes the data by a piecewise-linear convex hull. The DEA effi-

ciency score e�
��� solves the following optimization problem: 

 

min
�,�

e   subject to 

e ∙ x�� − � λ�

�

���

x�� ≥ 0  m = 1, … , M  
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� λ�

�

���

y��− y�� ≥ 0  l= 1, … , L 

λ� ≥ 0 ∀j 

 

where λ is a weighting parameter that maximizes the productivity. In this paper we fo-

cus on the basic version of the DEA. With respect to outliers, sampling and measurement data 

issues we focus on the later introduced partial frontier analysis. For (robust) extensions of the 

DEA we refer to Bogetoft and Otto (2011) and Wilson and Clemson (2013). 

We compare each university i with every other university in the data set (j = 1 … N). 

The set of peer universities that satisfies the condition y�� ≥ y�� ∀l is denoted by B�. Among 

the peer universities, the one that exhibits the minimum input serves as a reference to i and 

e�
���  is calculated as the relative input use 

 

e��
��� = min

�∈��

� max
���,… ,�

�
x��

x��
�� 

 

Universities that exhibit the minimum input-output serve as references. For these uni-

versities the efficiency score e�
���  is 1. The FDH approach was introduced by Deprins, Simar, 

and Tulkens (2006). 

3.1.2  Order-m efficiency 

In case of order-m efficiency the partial aspect comes in by departing from the assump-

tion that the universities are benchmarked on the basis of the best-performing universities in 

the sample. Instead, the best performance of a sample including m peers is considered. Daraio 

and Simar (2007) proposed the following four-step procedure: 

Draw from B� a random sample of m peer universities with replacement. 

A pseudo-FDH efficiency score (e���
���� � ) is calculated using the artificial drawn data. 

Repeat steps 1 and 2 D  times. 

Order-m efficiency is calculated as the average of the pseudo-FDH scores 

 

e���
�� =

1

D
� e���

���� �

�

���
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A potential result of this procedure is that the order-m efficiency scores exceed the val-

ue of one. This is due to the resampling: in each replication d, university i may or may not be 

used for its own comparison. Therefore, this procedure allows for super-efficient universities 

(with e���
�� > 1) located beyond the estimated production-possibility frontier. There are two 

parameters that need to be determined beforehand: m and D . D is just a matter of accuracy. 

The higher D  is, the more accurate are the results. It prolongs the computational time only. 

The choice of m is more critical. The smaller m is, the larger is the share of super-efficient 

universities. For m → ∞  the approach converges to the FDH results. 

3.1.3  Order-α efficiency  

The order-α approach generalizes the FDH otherwise. Instead of searching for the min-

imum input-output relationship among the available peer universities (the benchmark), order-

α uses the (100 − α)th percentile 

 

e���
�� = P(�����)

�∈��

� max
���,… ,�

�
x��

x��
�� 

 

When α = 100, the approach replicates the FDH results. In case of α < 100, some uni-

versities may be classified as super-efficient. As m is the approach explained in section 3.1.2, 

α can be considered as a tuning parameter: the smaller α is, the larger is the share of the su-

per-efficient universities. 

3.1.4 A simple example for explaining the approaches 

Figure 1 illustrates the outlined full and PFA approaches. We plotted input-output com-

binations for various artificial universities. The results of the DEA are given by the straight 

line. Universities A, B, and E define the academic production frontier. These universities have 

an efficiency score of 1, i.e. an optimal input-output combination. The other universities on 

the right of or below the frontier are considered as inefficient. In case of the FDH, the outer 

hull is spanned in more explicitly by also considering universities that are not on the DEA 

curve. In Figure 1, universities C and D are also efficient now. Since the frontier has shifted 

towards the right, the efficiency scores for all other universities slightly increase. The distance 

to the frontier is smaller than for the DEA. 

Applying the partial frontier approaches – order-m or order-α – we get a different pic-

ture. Only universities C and D are efficient with a corresponding score of 1; universities A, 
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B, and E are considered as super-efficient with a score larger than 1. Of course, both ap-

proaches do not necessarily yield the same results, as the figure might suggest. 

 

Figure 1. Graphical exposition of full and partial frontier efficiency analysis 

 

 

3.1.5 Regression analyses and adjusted efficiency scores 

We performed regression analyses to produce adjusted efficiency scores for the univer-

sities. Since the universities have different profiles, the scores from the regression analyses 

are adjusted to these differences. Thus, the focus of the regression analyses is not on explain-

ing the variance of the scores (as done, e.g., by Agasisti & Wolszczak-Derlacz, 2015). We 

used Stata (StataCorp., 2015) to compute the regression analyses. 

The efficiency scores from the four approaches (explained above) are the dependent 

variable in the model. Four indicators are included as independent variables in the models, 

which reflect the disciplinary profile of the university. We expect that the disciplinary profile 

is related to the efficiency of a university. The results of Bornmann, de Moya Anegón, and 

Mutz (2013) show that the field-normalized citation impact of universities depends on the 

disciplinary profile. For each university, we searched for the number of publications in four 

broad disciplines and the multidisciplinary field in the SCImago Institutions Ranking 

(http://www.scimagoir.com). For each institution, the percentages of publications that belong 

to the four disciplines were calculated and included in the regression model (mean centered). 
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As a further independent variable, the binary information is considered whether the institution 

is a public (0) or private (1) university. Private universities tend to be elite research institu-

tions. More than these two indicators are not available in the SCImago Institutions Ranking, 

which was used in the regression analyses to reflect the profiles of universities. 

We used the cluster option in Stata to consider in the regression analysis that the univer-

sities are in different US states. With 10 universities, the most universities are located in Cali-

fornia. The different regulations and financial opportunities in the states probably lead to re-

lated efficiency scores for universities within one state. The cluster option corrects the stand-

ard errors for the fact that there are up to 10 universities in each state. Although the point es-

timates of the coefficients are the same as in the regression model without the option, the 

standard errors are typically larger (Angeles, Cronin, Guilkey, Lance, & Sullivan, 2014). 

3.2 Data 

For our case study, we gathered input and output data for the 50 best performing US 

universities as listed in the THE Ranking 2015. As input we used the amount of budget. The 

data source is the National Center for Education Statistics (NCES).1 The NCES gathers data 

from universities by applying uniform data definitions. This ensures the comparability of in-

puts across universities, which is an important requirement of efficiency studies (Bonaccorsi, 

2014; Eumida, 2009). The data refer to the academic year, which starts on June, 1st and ends 

on May, 31st. As we needed information for three calendar years (the output data refer to the 

calendar years 2011, 2012, and 2013), we transformed the data. As an example, we obtained 

the input data for 2013 by taking 7/12 of the data from the academic year 2013/14 and 5/12 

from 2012/2013. This approach might introduce some unknown biases as we assume that the 

budget is spent evenly across the year. So, we cannot assure that the budget represents cor-

rectly the production process of a university. Potential measurement errors are further reasons 

to employ PFA. In the best case biases cancel out across the sample. 

 
 
 
 
 

 

                                            
1  The data can be downloaded from 

http://nces.ed.gov/ipeds/datacenter/InstitutionProfile.aspx?unitid=adafaeb2afaf.  
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Table 1. Descriptive statistics over time 

  2011 2012 2013 

  Budget Ptop 1% Budget Ptop 1% Budget Ptop 1% 

Mean 2,511,431,540 254 2,625,579,734 277 2,744,293,230 225 

Median 2,338,410,542 213 2,362,932,171 228 2,485,447,347 197 

Standard 

Deviation 1,354,727,092 160 1,427,057,141 182 1,505,658,689 151 

Minimum 538,295,750 35 560,340,667 19 584,337,500 24 

Maximum 5,736,790,750 1002 5,883,354,333 1198 6,160,311,750 977 

Notes. Descriptive statistics for the input and output are reported.  

As we focus on the best US universities, we use as output the number of papers that be-

long to the 1% (Ptop 1%) most frequently cited papers in the corresponding fields and publi-

cation years (Bornmann, de Moya Anegon, & Leydesdorff, 2012). The typical output varia-

bles in efficiency analysis are students, graduates, and funding; publications are used rather 

seldom (Abramo, D'Angelo, & Pugini, 2008; Warning, 2004). To the best of our knowledge 

this is the first study using top-cited publications as output variable. The data were obtained 

from the SCImago Institutions Ranking, which is based on Scopus data (see 

http://www.scimagoir.com). The output data refer to the publication period from 2011 to 2013 

with a citation window from publication until the end of 2015. In section 4, we focus on the 

results for 2013. Both other publication years allowed us to take a look on the stability of the 

results. 

Table 1 shows the descriptive statistics both for the input and output from 2011 to 2013. 

The dataset is fairly heterogeneous as the difference between minimum and maximum indi-

cates. Furthermore, the standard deviation is quite large compared to the mean. The distribu-

tions of the variables are not significantly skewed as mean and median are very close togeth-

er. The development over time points out that the budget figures increase whereas the average 

Ptop 1% peaked in 2012 and dropped considerably in 2013. Table 2 reports the correlation 

coefficients between the budget and Ptop 1% over time. All coefficients are about 0.6 imply-

ing a moderate positive relationship. 

Table 2. Correlations between budget and Ptop 1% over time 

  2011 2012 2013 

Coefficient 0.587 0.572 0.610 
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4 Results 

Following the methods as outlined in section 3.1, we estimated four efficiency scores 

for each university and year in our data set and obtained the corresponding efficiency rank-

ings for 2011 to 2013. 

Figure 2. Number of super-efficient universities for different values of m and α 

 

 

In contrast, PFA requires the specification of parameters, which eventually influence the 

amount of super-efficient universities. The order-α approach requires α, the percentile of the 

set of peer universities used as benchmark. Order-m requires m, the number of peer universi-

ties randomly drawn from the initial set of universities. Unless we set m = 50 or α = 100, 

where the partial frontier approaches converge to FDH, we find super-efficient universities by 

construction. Figure 2 shows the number of super-efficient universities for different values of 

m and α. We used data for the year 2013. It is clearly visible that with higher m or α values, 

respectively, the number of super-efficient universities becomes lower. Concerning m, the 

figure is quite stable beyond 25. We opted to set m = 40 and α = 95%, which yield on 11 and 

8 super-efficient universities, respectively. 

4.1 Baseline results 

4.1.1 Results for 2013 
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Table 3 reports the efficiency scores with their corresponding rankings based on the da-

ta from 2013. The universities are sorted by their ranking positions in the THE Ranking 2015.  

In 2013, 48 universities are not efficient according to the DEA results. This number 

drops to 36 universities using the FDH approach. This is because both Harvard and Rice Uni-

versity dominate the estimated academic efficiency frontier: Harvard University due to its 

very high output values and Rice University due to its small input values relative to the out-

puts. With respect to the order-α framework, there are 8 universities with a score larger than 

one. This number is increased to 11 based on the order-m approach. In the majority of cases, 

the order-α approach yields higher scores compared to the order-m approach. 

In the order-α framework and the order-m approach, Harvard University remains effi-

cient with a score of 1.00 and is not denoted as super-efficient. However, Rice University is 

super-efficient. The highest efficiency scores in the order-α approach obtain the Case Western 

Reserve University and the University of California; Santa Barbara has the highest score in 

the order-m model. 

Based on a Stochastic Frontier analysis, Agasisti and Johnes (2015) also report efficien-

cy scores for various US universities, but with the number of bachelors and postgraduate de-

grees on the output side. Similar to our results, the authors found Harvard University at the 

top and Rice University among the 20 best universities. 
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Table 3. Efficiency scores and the corresponding rankings based on different ap-

proaches for measuring efficiency in 2013 (sorted by THE Ranking) 

  DEA FDH Order-α Order-m 

THE  University Score Rank Score Rank Score Rank Score Rank 

1 California Institute of Technology 0.505 21 0.844 17 0.859 20 0.851 18 

2 Harvard University 1.000 1 1.000 1 1.000 9 1.000 12 

3 Stanford University 0.554 20 1.000 1 1.000 9 1.000 12 

4 Massachusetts Institute of Technology 0.640 13 1.000 1 1.000 9 1.000 12 

5 Princeton University 0.616 15 0.938 15 1.000 9 0.972 15 

6 University of California, Berkeley 0.659 12 1.000 1 1.000 9 1.003 11 

7 Yale University 0.437 27 0.599 32 0.599 35 0.603 34 

8 University of Chicago 0.321 38 0.545 35 0.554 38 0.549 35 

9 University of California, Los Angeles 0.320 39 0.510 37 0.510 42 0.510 40 

10 Columbia University 0.452 24 0.822 18 0.822 22 0.822 19 

11 Johns Hopkins University 0.387 32 0.605 30 0.605 34 0.605 33 

12 University of Pennsylvania 0.280 41 0.473 44 0.473 45 0.473 45 

13 University of Michigan, Ann Arbor 0.280 42 0.478 43 0.478 44 0.479 44 

14 Duke University 0.302 40 0.517 36 0.517 40 0.519 37 

15 Cornell University 0.724 8 1.000 1 1.000 9 1.004 10 

16 North-western University, Evanston 0.697 10 1.000 1 1.000 9 1.011 8 

17 Carnegie Mellon University 0.587 17 0.722 24 0.869 19 0.782 21 

18 University of Washington 0.418 29 0.668 28 0.668 30 0.669 29 

19 Georgia Institute of Technology 0.623 14 1.000 1 1.319 3 1.092 4 

20 University of Texas, Austin 0.393 31 0.703 25 0.716 28 0.709 26 

21 

University of Illinois at Urbana-

Champaign 0.353 35 0.483 41 0.555 37 0.512 38 

22 University of Wisconsin, Madison 0.485 22 0.729 23 0.729 27 0.736 24 

23 University of California, Santa Barbara 0.873 4 1.000 1 1.292 5 1.126 1 

24 New York University 0.261 46 0.418 47 0.418 48 0.422 47 

25 University of California, San Diego 0.429 28 0.666 29 0.666 31 0.670 28 

26 Washington University in Saint Louis 0.484 23 0.773 20 0.773 24 0.781 22 

27 University of Minnesota, Twin Cities 0.381 34 0.605 31 0.615 33 0.609 32 

28 

University of North Carolina, Chapel 

Hill 0.439 26 0.671 27 0.671 29 0.676 27 

29 Brown University 0.812 6 1.000 1 1.205 6 1.099 3 

30 University of California, Davis 0.274 43 0.480 42 0.489 43 0.484 43 

31 Boston University 0.566 19 0.821 19 1.000 9 0.888 17 

32 Pennsylvania State University 0.196 50 0.397 48 0.404 49 0.402 48 

33 Ohio State University, Columbus 0.216 49 0.361 49 0.368 50 0.363 49 

34 Rice University 1.000 1 1.000 1 1.294 4 1.082 5 

35 University of Southern California 0.270 44 0.507 38 0.516 41 0.512 39 

36 Michigan State University 0.331 37 0.436 45 0.646 32 0.494 41 

37 University of Arizona 0.449 25 0.680 26 0.780 23 0.725 25 

38 University of Notre Dame 0.589 16 0.592 33 0.765 25 0.645 30 

39 Tufts University 0.751 7 0.750 21 0.970 18 0.816 20 

40 University of California, Irvine 0.338 36 0.499 39 0.573 36 0.531 36 

41 University of Pittsburgh 0.583 18 1.000 1 1.018 8 1.005 9 

42 Emory University 0.219 47 0.435 46 0.443 47 0.439 46 

43 Vanderbilt University 0.262 45 0.487 40 0.522 39 0.494 42 

44 University of Colorado, Boulder 0.687 11 1.000 1 1.148 7 1.063 7 

45 Purdue University 0.414 30 0.555 34 0.823 21 0.637 31 

46 University of California, Santa Cruz 0.925 3 1.000 1 1.348 2 1.123 2 

47 Case Western Reserve University 0.722 9 1.000 1 1.362 1 1.082 6 

48 University of Rochester 0.218 48 0.302 50 0.447 46 0.344 50 

49 Boston College 0.840 5 0.848 16 1.000 9 0.911 16 

50 University of Florida 0.382 33 0.733 22 0.746 26 0.740 23 
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Table 4 shows the coefficients for the correlation between the ranking positions of the 

universities in the THE Ranking 2015 and the results of the efficiency analyses. The results 

point out that the ranking positions and the scores from the efficiency analysis are correlated 

at a very low level compared to the correlations among the different results of the efficiency 

analyses. The results of the four efficiency approaches are highly correlated. 

Table 4. Spearman rank correlation coefficients for 2013 

  THE DEA FDH order-α order-m 

THE 1.000 

DEA 0.031 1.000 

FDH 0.169 0.926 1.000 

order-α -0.014 0.959 0.950 1.000 

order-m 0.079 0.947 0.984 0.978 1.000 

4.1.2 Stability of the results over time 

Table 5 reports the rank correlations across time (2011, 2012, and 2013) for each ap-

proach of the efficiency analysis. They are all above 0.9 suggesting that the results are quite 

stable over the observed time period. 

 

Table 5. Spearman rank correlations for each approach of efficiency analysis across 

time 

  DEA FDH 

2011 2012 2013 2011 2012 2013 

2011 1.00 2011 1.00 

2012 0.98 1.00 2012 0.92 1.00 

2013 0.98 0.99 1.00 2013 0.93 0.89 1.00 

order-α order-m 

2011 1.00 2011 1.00 

2012 0.95 1.00 2012 0.92 1.00 

2013 0.95 0.93 1.00 2013 0.93 0.89 1.00 
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4.2 Adjusted scores and ranking positions 

4.2.1 Results for 2013 

The results of the regression analyses are shown in Table 6. As dependent variables, the 

efficiency scores from Table 3  are used (results from the DEA, FDH, order-α approach, and 

order-m approaches). We performed linear regressions because the residuals were approxi-

mately normally distributed (as tested with the sktest in Stata). The coefficients for all disci-

plines point out that a decrease in the share of publications is associated with higher efficiency 

scores. If expensive research is done by the university, its efficiency is decreasing. Thus, a 

high share of paper output especially in physical and health sciences – with the largest coeffi-

cients – is related to lower efficiency scores. Furthermore, the results in Table 6 demonstrate 

that private universities are more efficient than public universities. Most of the coefficients in 

the models are statistically not significant (which might be the result of the low numbers of 

universities in the study).  

Table 6. Beta coefficients and t statistics of the regression models with the efficiency 

scores as dependent variable for 2013 

 DEA FDH order-α order-m 

Life sciences -0.34 -0.86* -0.32 -0.73 

 (-1.17) (-2.40) (-0.69) (-1.89) 

Physical sciences -0.99 -2.51* -0.80 -2.09 

 (-1.17) (-2.39) (-0.58) (-1.84) 

Social sciences -0.29 -0.76* -0.27 -0.63 

 (-1.27) (-2.62) (-0.71) (-2.02) 

Health sciences -0.78 -1.84* -0.66 -1.55 

 (-1.31) (-2.47) (-0.66) (-1.92) 

Private state 0.11 0.05 0.09 0.06 

 (1.38) (0.69) (0.91) (0.74) 

Constant 0.45*** 0.69*** 0.74*** 0.71*** 

 (11.66) (17.19) (14.46) (16.48) 

Universities 50 50 50 50 

Notes. t statistics in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001 

 

Subsequent to the regression models, we calculated efficiency scores for every universi-

ty, which are adjusted by the influence of the independent variables. Thus the scores are ad-

justed to the different institutional and field-specific profiles of the universities. It is worth 
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noting that the adjusted scores are not predicted values, but institutional values for which the 

residuals from the regression analyses were added to the mean initial efficiency scores. 

The adjusted ranking positions (based on the adjusted scores) are listed in Table 7 be-

sides the initial ranking positions. Although both ranking positions are highly correlated 

(DEA: rs=0.87, FDH: rs=.88, order-α: rs=.85, order-m: rs=.89), there are significant rank 

changes for some universities. For example, Rice University shows a perfect rank position in 

the DEA; but if the score is adjusted by the independent variables in the regression model, its 

score decreases, leading to the fifth ranking position. 
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Table 7. Initial efficiency rank positions and adjusted rank positions in 2013 (sorted 

by adjusted DEA scores) 

University DEA 
DEA 

adjust. FDH 
FDH 

adjust. order-α 
order-α 
adjust. order-m 

order-m 
adjust. 

Harvard University 1 1 1 7 9 8 12 10 

Case Western Reserve University 7 2 1 2 1 1 6 2 

University of California, Santa Cruz 3 3 1 11 2 3 2 6 

Brown University 6 4 1 3 6 2 3 3 

Rice University 1 5 1 17 4 11 5 17 

University of Pittsburgh 14 6 1 1 8 4 9 1 
University of California, Santa Bar-
bara 4 7 1 13 5 5 1 7 

Tufts University 8 8 21 16 18 9 20 14 

Boston College 5 9 16 6 9 7 16 9 

Cornell University 10 10 1 4 9 12 10 4 

Northwestern University, Evanston 11 11 1 5 9 14 8 5 

University of Colorado, Boulder 9 12 1 12 7 13 7 11 

Georgia Institute of Technology 12 13 1 8 3 6 4 8 
University of North Carolina, Chapel 
Hill 26 14 27 18 29 18 27 19 
Washington University in Saint 
Louis 21 15 20 19 24 19 22 18 

University of California, Berkeley 16 16 1 10 9 16 11 15 

Boston University 19 17 19 15 9 10 17 12 

University of Wisconsin, Madison 25 18 23 20 27 21 24 20 

University of Arizona 23 19 26 22 23 22 25 22 

University of Florida 33 20 22 9 26 17 23 13 

University of Minnesota, Twin Cities 34 21 31 24 33 25 32 24 

Columbia University 24 22 18 21 22 20 19 21 

Johns Hopkins University 32 23 30 28 34 29 33 26 

Stanford University 20 24 1 14 9 15 12 16 

University of Notre Dame 18 25 33 33 25 38 30 36 

University of California, San Diego 31 26 29 29 31 27 28 27 

Carnegie Mellon University 17 27 24 30 19 40 21 31 

Purdue University 27 28 34 35 21 23 31 30 

University of Washington 30 29 28 25 30 28 29 25 
University of California, Los Ange-
les 39 30 37 36 42 35 40 37 
Massachusetts Institute of Technolo-
gy 13 31 1 27 9 30 12 28 

Yale University 28 32 32 31 35 31 34 32 

Michigan State University 35 33 45 39 32 26 41 34 

Princeton University 15 34 15 23 9 24 15 23 

University of California, Irvine 36 35 39 44 36 37 36 41 

University of California, Davis 43 36 42 32 43 32 43 33 

University of Texas, Austin 29 37 25 26 28 34 26 29 

University of Michigan, Ann Arbor 46 38 43 42 44 43 44 42 

Vanderbilt University 41 39 40 34 39 33 42 35 

Duke University 40 40 36 37 40 39 37 39 
University of Illinois at Urbana-
Champaign 37 41 41 43 37 45 38 44 

Emory University 47 42 46 40 47 36 46 38 

University of Pennsylvania 42 43 44 45 45 42 45 45 

Ohio State University, Columbus 49 44 49 46 50 49 49 47 

University of Chicago 38 45 35 47 38 41 35 46 

University of Southern California 44 46 38 38 41 44 39 40 

New York University 45 47 47 49 48 46 47 48 

California Institute of Technology 22 48 17 41 20 48 18 43 

University of Rochester 48 49 50 50 46 47 50 50 

Pennsylvania State University 50 50 48 48 49 50 48 49 
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4.2.2 Stability of the results over time 

Table 8 shows the Spearman rank correlation coefficients across time (2011, 2012, and 

2013) for each approach of the efficiency analysis (adjusted scores). The coefficients are 

above or around 0.9, which demonstrate that the results are stable over the publication years 

considered. 

Table 8. Spearman rank correlations for the adjusted scores from each approach 

across time 

  DEA   FDH 

2011 2012 2013   2011 2012 2013 

2011 1.00   2011 1.00 

2012 0.96 1.00   2012 0.81 1.00 

2013 0.96 0.96 1.000 2013 0.89 0.88 1.00 

order-α   order-m 

2011 1.00   2011 1.00 

2012 0.89 1.00   2012 0.84 1.00 

2013 0.91 0.92 1.00 2013 0.91 0.92 1.00 

5 Discussion 

Research evaluation is the backbone of modern science. The emergence of the modern 

science system is closely related to the introduction of the peer review process in assessments 

of research results (Bornmann, 2011). Whereas output and impact assessments were initially 

at the forefront of assessments, efficiency measurements have become popular in recent years 

(Rhaiem, 2017). According to Moed and Halevi (2015), research efficiency or productivity is 

measured by indicators that relate research output to input. The consideration of research in-

put in research evaluation is obvious, since the output should be directly related to the input. 

The output is determined by the context in which research is undertaken (Rhaiem, 2017; 

Waltman & van Eck, 2016). In this study, we went one step further. We not only related input 

to output for universities, but also calculated adjusted efficiency scores, which consider the 

different institutional and field-specific profiles of the universities. For example, it is easily 

comprehensible that the input-output relations are determined by the disciplinary profiles of 

the universities. 

The present study is based on a comprehensive dataset with input- and output-data for 

50 US universities. As input we used number of staff and amount of budget and as output the 

number of (highly-cited) papers. The results of the DEA and FDH analysis show that Harvard 
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University and Rice University can be called especially efficient – compared with many other 

universities. Similar results can be found in other efficiency studies including US institutions. 

Whereas the strength of Harvard University is its high output of (highly-cited) papers, the 

strength of Rice University is its small input. In the order-α and order-m frameworks, Harvard 

University remains efficient, but Rice University becomes super-efficient. Although Harvard 

University and Rice University are well-known as the best universities in the world, the corre-

lations between the ranking positions of the universities in the THE Ranking 2015 and the 

results of the efficiency analyses are at a relatively low level. Thus, the consideration of inputs 

puts a different complexion on institutional performance. 

Besides the university rankings based on the different statistical approaches for efficien-

cy analyses, we produced rankings using adjusted efficiency scores (subsequent to regression 

analyses). Here, for example, Rice University’s ranking position fell. Although regression 

analyses have been used in many other efficiency studies, they have been commonly used to 

explain the differences in efficiency scores (Rhaiem, 2017), but not to generate adjusted 

scores (for rankings). The adjusted rankings open up new possibilities for institutional per-

formance measurements, as demonstrated by Bornmann et al. (2014). They produced a co-

variate-adjusted ranking of research institutions worldwide in which single covariates are held 

constant. For example, the user of the ranking produced by Bornmann et al. (2014) is able to 

identify institutions with a very good performance (in terms of highly cited papers), despite a 

bad financial situation in the corresponding countries. 

What are the limitations of the current study? Although we tried to realize an advanced 

design of efficiency analyses, the study is affected by several limitations that should be taken 

into account in future studies. 

The first limitation is related to the numbers of indicators used. We included only two 

input- and output-indicators, respectively. One important reason for this restriction is the fo-

cus of this study on efficiency in research. However, many more indicators could be included 

in future studies. The efficiency study of Bruffaerts et al. (2013), which also focuses on US 

universities, additionally included the number of PhD degrees as input indicators, as well as 

several environmental variables (e.g. university size and teaching load). In an overview of 

efficiency studies, Rhaiem (2017) categorized possible research output-indicators for efficien-

cy analyses as follows: research outputs, research productivity indices, and quality of research 

indicators. The categorizations for possible input indicators are: “Firstly, human capital cate-

gory refers to academic staff and non-academic staff; secondly, physical capital category re-

fers to productive capital (building spaces, laboratories, etc.); thirdly, research funds category 
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encompasses budget funds and research income; fourthly, operating budget refers to income 

and current expenditures; fifthly, stock of cumulative knowledge regroups three sub-

categories: knowledge embedded in human resources, knowledge embedded in machinery and 

equipment, and public involvement in R&D; sixthly, agglomeration effects category refers to 

regional effect and entrepreneurial environment” (p. 595). 

The second limitation concerns the quality of the input data (Waltman et al., 2016). 

“Salary and investment financial structures differ hugely between countries, and salary levels 

differ hugely between functions, organizations and countries. To paraphrase Belgian surreal-

ism: a salary is not a salary, while a research investment is not a research investment. Compa-

rability (and hence validity) of the underlying data themselves not only is a challenge, it is a 

problem” (Glänzel, Thijs, & Debackere, 2016, p. 659). We tried to tackle the problem in this 

study by using the data for all universities from one source: NCES. However, the comparabil-

ity of the data for the different universities may remain a problem. Thus, Waltman et al. 

(2016) recommend that “scientometricians should investigate more deeply what types of input 

data are needed to construct meaningful productivity indicators, and they should explore pos-

sible ways of obtaining this data” (p. 673) in future studies. 

The third limitation questions the general implementation of efficiency studies in the 

practice of research evaluation. The results of the study by Aagaard and Schneider (2016) 

highlight many difficulties in explaining research performance (output and impact) as a linear 

function of input indicators. Bornmann and Haunschild (2016) see efficiency in research as 

diametric to creativity and faulty incrementalism, which are basic elements of each (success-

ful) research process. According to Ziman (2000) “the post-academic drive to ‘rationalize’ the 

research process may damp down its creativity. Bureaucratic ‘modernism’ presumes that re-

search can be directed by policy. But policy prejudice against ‘thinking the unthinkable’ 

aborts the emergence of the unimaginable” (p. 330). 
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