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and 2016, the aim of this short paper is to answer three important questions: First, do we 
observe that the U.S. city size distribution exhibits a smooth transition to Zipf's law from the 
beginning or are there periods showing a pronounced departure from Zipf's law? Second, if we 
observe periods of departure, which alternative laws instead should be used to accurately 
describe the city size distribution? Third, employing information from the cascade structure of 
cities, do we always find evidence for primate cities for a specific period of time? Inter alia, we 
find that the exact Zipf's law has evolved over time from the more general, so-called three-
parameter Zipf's law which can be traced back to Mandelbrot (1982). 
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1 Introduction

Gabaix (1999) proposed that ”[...] city size processes must have the time to converge to

Zipf’s law”. Accordingly, city size processes can be described as an evolutionary process

where different states of urbanization require different forms of city size distributions.

Stated in other words: Even if the city size process converges to the well-known Zipf’s

law, this law must not be necessarily fit to every stage of urbanization. Using a novel

methodology and based on a dataset for U.S. cities between 1840 and 2016, the aim of

this short paper is to answer three important questions: First, do we observe that the

U.S. city size distribution exhibits a smooth transition to Zipf’s law from the beginning

or are there periods showing a pronounced departure from Zipf’s law? Second, if we

observe periods of departure, which laws instead should be used to accurately describe

the city size distribution? Third, employing information from the cascade structure of

cities, do we always find evidence for primate cities for a specific period of time?

In order to answer the raised first two questions, according to Chen (2016), we argue

that the exact Zipf’s law has evolved over time from the more general, so-called three-

parameter Zipf’s law which can be traced back to Mandelbrot (1982). Thus, we employ

the three-parameter Zipf’s law to study the rank-size distribution of U.S. cities between

1840 and 2016. To validate these results and to answer the third question, we employ

the finding made by Chen (2012b) who shows that Zipf’s law can be derived by the

hierarchical scaling law based on a cascade structure of cities. Intuitively, if the top

level of a hierarchy is vacant, we can conclude that there is no evidence for primate

cities.

The paper makes the following points: First, for the great majority of the examined

years between 1840 and 2016, the U.S. city size distribution can be described by a

two-parameter Zipf’s law with a decreasing scaling exponent. From this result we can

conjecture that the U.S. city size distribution has become more equally distributed over

time thereby diverging from the exact Zipf’s law. Relating our results with the findings

made by Black and Henderson (2003) or Dobkins and Ioannides (2001), we further

conclude that especially in the last decades of the twentieth century, the growth of the

largest U.S. areas has mainly taken the form of suburbanization.

The next section outlines the one-, two- and three-parameter Zipf model. In section 3

we show the correspondence between Zipf’s law and the hierarchical scaling law and

explain the methodological approach to validate the calculated Zipf models. Section 4

presents the empirical strategy, followed by section 5 which presents the data. Section
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6 discusses the results. Section 7 contrasts our findings with the relevant literature and

concludes.

2 A family of Zipf’s law

In this section we shortly introduce the three-, two- and one-parameter Zipf’s law.

Suppose that P (r) denotes the size of a city with rank r = {1, 2, 3, ...}, where the

largest city has rank 1. Further, let k denote a scale-translational parameter and define

q as the scaling exponent.

2.1 The three-parameter Zipf’s law

The three-parameter model, which can be traced back to Mandelbrot (1982), reads as:

P (r) =
Θ

(r + ξ)−q
, (2.1)

where ξ represents an adjustment parameter, and Θ shows a proportionality coefficient.

Recently, Chen and Zhou (2008) have shown that Mandelbrot’s (1982) law given with

equation (2.1) can be rewritten by capturing the cascade structure of urban hierarchies:

P (r) =
P1−k

(r + k)−q
, (2.2)

with P1−k showing the size of the (1 − k)-th possible largest city. In contrast to the

exact Zipf’s law, this law describes a situation of a more evenly (q < 1) or a more

unevenly (q > 1) sized distribution without leading cities in the top level of the urban

ranking (k > 0).

2.2 The two-parameter Zipf’s law

The two-parameter Zipf’s law directly arrives from equation (2.2) by letting k = 0:

P (r) =
P1

r−q
, (2.3)

with P1 showing the size of the largest city in the urban hierarchy.1

1If the leading cities are missing (k > 0) and the scaling exponent is q = 1, we will receive a special

form of the two-parameter Zipf’s law.
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2.3 The one-parameter Zipf’s law

If we further assume that the scaling exponent is q = 1, from equation (2.2) we directly

deduce the exact form of Zipf’s law which states that the rank of a city r is inversely

related to its size P (r) (also see Auerbach (1913) and Zipf (1949)):

P (r) =
P1

r
. (2.4)

3 The correspondence between Zipf’s law and the hierarchical

scaling law

As shown by Chen (2012b), Zipf’s law can be transformed into the hierarchical scaling

law. In what follows, we briefly show the correspondence between the hierarchical

scaling law and Zipf’s law.

In a first step, we construct a hierarchy of cities. Suppose, there are M levels of cities

with m = {1, 2, ...,M}. Further, let fm be the number of cities in the m-th level,

whereas f1 refers to the number of cities in the top level. Pm is the average size of

the cities in the m-th level. Following Chen (2012b), the hierarchy of cities can be

described with two discrete exponential functions, fm = f1δ
m−1 and Pm = P1λ

1−m,

with parameters δ = fm+1

fm
> 1 and λ = Pm

Pm+1
> 1 referring to the number ratio and the

size ratio, respectively.

Using these two equations, Chen (2016) shows that the three-parameter Zipf’s law can

be reinterpreted as a fractal model of the rank-size distribution of cities:

fm = ηP−Dm , (3.1)

with η ≡ f1P
D
1 as a proportionality coefficient. The scaling exponent D is directly

associated with the fractal dimension of urban hierarchies:

D = − lim
m→∞

ln(Nm+1

Nm
)

ln(Pm+1

Pm
)

= −
ln(fm+1

fm
)

ln(Pm+1

Pm
)

=
ln(δ)

ln(λ)
≡ 1

q
, (3.2)

with Nm as the cumulative number of city levels. Taken together, equation (3.1) and

(3.2) shows a direct correspondence between the hierarchical scaling law, Pareto’s law

and the three-parameter Zipf’s law presented with equation (2.2).2

2See also Chen (2012a), p. 3295.
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4 Empirical strategy

To check whether or not the structure of cities follows the hierarchical scaling law, we

employ the so called Reduced Major Axis (RMA) regression approach, from which we

have (Zhang and Yu (2010)):

DRMA =

√
DOLS

qOLS
, (4.1)

where DOLS and qOLS are the OLS-estimates from running a standard OLS regression

of the logarithmic version of equation (2.2). Thus, if the difference between |DRMA −
DOLS| → 0, we can be sure that the city structure follows a hierarchical scaling law.

Appendix 1 explains the further steps of the estimation procedure in more detail.

5 Dataset

In order to study the evolution of the U.S. city size distribution, a dataset from the U.S.

Bureau of the Census is applied. It contains the population data of the 100 largest urban

places in the U.S. every ten years from 1840 to 2016. This dataset is supplemented by

the sizes of the 601 largest cities for the years 1990 and 2000 as well as the sizes of the

300 largest cities for 2010 and 2016.3

6 Results

6.1 The evolution of the U.S. city size distribution

We follow Chen’s (2016) procedure to estimate the scaling exponent q for different

parameters k and stop when the value of goodness of fit (R2) reaches its highest value.4

Figure (6.1) shows the evolution of the scaling exponent q over time. For most of the

years this maximum is attained for k = 0 (see Table A.2 in the Appendix), rejecting a

3Before 1950 urban places were defined as any incorporated places with at least 2500 inhabitants.

Since 1950, the Census Bureau has differentiated between large cities, which are considered in our

study, and urbanized areas in order to account for suburban areas in the vicinity of large cities.

The data can be accessed online from https://www.census.gov/population/www/documentation/

twps0027/twps0027.html#urban, http://demographia.com/db-uscity98.htm and https://www.

census.gov/data/tables/2016/demo/popest/total-cities-and-towns.html.
4As an example, the estimation results for the years 1880 and 2016 are depicted in Figure A.1 in

the Appendix.
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Figure 6.1: Evolution of the scaling exponent q between 1840 and 2016.

Notes: The circles (triangles) show the calculated scaling exponents for k = 0 (k = 1), when the R2

reaches its maximum. For each estimated scaling exponent q, the 95%-confidence intervals for the

bootstrapped estimate of q with 10000 replications are depicted. Source: Own illustration based on

data by United States Census Bureau.

three-parameter Zipf model. Further, the scaling exponent q is decreasing over the time

horizon (see Figure 6.1). For the first 60 years (from 1840 to 1900) q fluctuates around

the value one. From 1910 to 1950, we observe that q remains constant taking a value

slightly above q = 0.9. Starting with the year 1950, the calculated scaling exponent

distinctly decreases to q = 0.75 in 1990, followed by a further reduction with a value

of q = 0.72 until 2016.

However, we also find exemptions from this behavior. In particular, we cannot reject

the exact Zipf’s law (q = 1) for the years 1860 and 1870. In the years 1880 and 1890

the value of goodness of fit R2 does not reach its maximum for k = 0, but for k = 1.

Hence, the U.S. city size distribution follows the three-parameter Zipf’s law in these

years. For the dataset from 1850, k = 1 is optimal and q = 1 cannot be rejected. We

receive a special form of the two-parameter model.

To check the robustness of our findings, we considered larger datasets, which yields
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rather similar estimation results.5 We find that the scaling parameter k = 0 is optimal

and the scaling exponent is slightly decreasing from q = 0.7650 in 1990 to q = 0.7298

in 2016.

To sum up, and with the exemption of the years 1850 to 1890, the U.S. city size

distribution significantly6 follows a two-parameter Zipf’s law in the years 1840-2016

even when considering larger samples. Hence, we can clearly reject the exact form of

Zipf’s law for U.S. city data.

6.2 The evolution of the hierarchy of the U.S. cities

We exploit the above mentioned dual relationship between the hierarchical scaling and

Zipf’s law to obtain a more precise understanding of the structure of urban hierarchies.

In particular, we want to explore whether or not the existence of primate cities is a

time invariant pattern that describes the U.S. city size distribution. In order to answer

this question, we have to make sure that the city structure follows a hierarchical scaling

law (see section 4).

Cities are ranked into 7 levels. If the one- or the two-parameter Zipf’s law fits the data,

the first level in the hierarchical structure consists of the largest city. The next level

comprises the second and third largest cities, the third level consists of the fourth to

the seventh largest cities and so on. The last level is supposed to comprise 64 cities, but

because our dataset only contains 100 cities, the last level comprises 37 cities. Hence,

it is not included in the estimation (see Table A.3).

The estimation of a three-parameter or the special form of the two-parameter model

suggests an absence of leading cities. That is, why the first two levels are absent, when

constructing the city hierarchy. So, the four largest cities are classed with the third

level. Again, the last level, comprising the forty smallest cities, is not included in the

estimation, as it is a lame-duck class.7

Looking at Table A.4 in the Appendix, we see that the the city structure follows

a hierarchical scaling law from 1840 to 1950 as well as for 1990-2016 when larger

datasets are used. For smaller datasets, we observe a pronounced divergence from the

5For the year 1990, the 587 largest cities and for 2000 all of the 601 cities are within the scaling

range. In 2010, 299 cities and in 2016 all 300 cities are included in the estimation.
6At a 5% level of significance.
7The classification for the years 1880 and 2016, when a three-parameter model and a two-parameter

model hold, is presented in Table A.3 in the Appendix.
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hierarchical scaling law starting with 1960 until the year 2016. This can also be seen

by comparing the log-rank/log-size plot with the hierarchical scaling relation between

the average sizes in the hierarchies of the U.S. cities and the city numbers.

To sum up, for the 100 largest cities and for most of the time span 1840-2016 we find

evidence for leading cities dominating the reaming largest U.S. cities and we find a

divergence from the hierarchical scaling law.

7 Discussion and Conclusion

This paper reveals the following aspects of the evolution of the U.S. city size distribu-

tion: (1) The 100 largest administratively defined U.S. cities can mostly be described

by a two-parameter Zipf model between 1840 and 2016. (2) For most of the years, the

examined scaling exponent q is lower than one and it has decreased, especially during

the second half of the twentieth century. (3) The U.S. city size distribution has become

more even over time and diverged from the exact Zipf’s law. (4) For most of the years,

we find evidence for leading cities dominating the reaming largest U.S. cities.

How can we relate our findings to the existing relevant literature? Surprisingly, there

is scant literature regarding the long-term evolution of Zipf’s law for the U.S.. The

great majority of studies uses cross-sectional data to check whether or not Zipf’s law

holds exactly.8 For instance, Krugman (1996) and Gabaix (1999) use data for U.S.

Metropolitan Statistical Areas (MSAs) and find that the one-parameter Zipf’s law holds

exactly for a minimum threshold of 280,000 inhabitants. These findings are recently

confirmed by Schmidheiny and Suedekum (2015) using novel data from an EC-OECD

project. Using U.S. census data, Soo (2005) found that the largest administratively

defined cities are more evenly and the largest urban agglomerations are more unevenly

distributed than predicted by the exact Zipf’s law (also see Gan et al. (2006) and

Ioannides and Overman (2003)). Our results clearly show that, since 1960, the scaling

exponent significantly drops year by year until 2016, indicating more evenly distributed

city sizes and a departure from Zipf’s law. Black and Henderson (2003) and Dobkins

and Ioannides (2001) which are closest to our study found that U.S. MSAs have become

more unequally distributed during the twentieth century. Thus, our results can be seen

as a confirmation of the fact that we observe an increasing suburbanization in the

8A detailed literature review on the theoretical and empirical findings on Zipf’s law is given by

Arshad et al. (2018).
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growth process of the largest U.S. urban areas starting in the 1960s (Soo (2005)).9

9According to Boustan and Shertzer (2013), a large portion of suburbanization in the U.S. over

the twentieth century can be explained by factors associated with the natural evolution process of

urbanization, like rising incomes, which led to a larger demand for housing and land, as well as

transportation improvements, especially the growing network of interstate highways. Furthermore,

the authors state that factors associated with the flight-from-blight theory of suburbanization, like

school quality, taxes, crime-rates and socioeconomic factors of the population, reinforced the spatial

dispersion. Also see Mieszkowski and Mills (1993), Bayoh et al. (2006) and Kim (2000).
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Online-Appendix

A.1 Estimation and Validation Procedure

The detailed approach, how to study the evolution of the U.S. city size distribution

relies on Chen (2016). It is as follows:

First step: Determine scaling range

As a first step, the scaling range is determined, which is a straight line on the plot with

the logarithmized size of the city on the y-axis and the logarithmized rank of the city

on the x-axis. Cities beyond this scaling range represent underdeveloped cities and they

are not considered in the analysis. Applying an OLS estimation yields a residual value

for each city and standardized residuals can be calculated. As proposed by Chen (2015),

if a standardized residual value is smaller than −2 or larger than 2, then the associated

data point will be treated as an outlier based on the significance level α = 0.05 and it

will be left out of the estimation.

Second step: Estimate Zipf model

Having defined the scaling range, we apply an OLS estimation and increase the scale-

translational parameter k until the value of goodness of fit R2 reaches its maximum.

According to the k, we receive a Zipf model describing the city size distribution. If

k = 0 is optimal and the estimation yields as a scaling exponent the value q = 1,

then we will receive the one-parameter Zipf model (2.4). In case that k = 0 and q 6= 1

or else k > 0 and q = 1, we obtain the two-parameter Zipf model (2.3) or a special

form of the two-parameter model, respectively. For k > 0 and q 6= 1, the result is the

three-parameter Zipf model (2.2).

Third step: Validate Zipf model

The ascertained model can be transformed into the hierarchical scaling law (3.1), which

is based on the hierarchy constructed by the city number law or city size law. In order

to validate our Zipf models, we apply the city number law. Given a number ratio of e.g.

δ = 2, then the number of cities in the different levels will be a geometric sequence such

as 1, 2, 4, ..., 2m−1. The average city size at each level can be easily calculated, leading

to a number based urban hierarchy. We can make a least square calculation to examine

whether the hierarchical scaling law can be well fitted to this hierarchical dataset and

thereby whether our estimated Zipf model can be validated.
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A.2 Figures

Figure A.1: Estimation Results for the 100 largest U.S. cities in 1880 and 2016
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(a) Three-parameter Zipf distribution
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(b) Two-parameter Zipf distribution
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(c) Hierarchical Scaling pattern (without lea-

ding cities)
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(d) Hierarchical Scaling pattern

Notes: Figure (a) and (c) relate to the year 1880, when a three-parameter Zipf’s law holds and Figure (b) and (d)
relate to the year 2016, when a two-parameter Zipf’s law holds.
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Figure A.2: Estimation Results for the 100 largest U.S. cities in selected years
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(a) Regression results for all years (1840 to

2016)
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(b) Regression results for the years

1840,1870,1900,1930,1960,1990,2016
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(c) Regression results for the years

1860,1910,1960,2010
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A.3 Tables

Table A.1

Number of inhabitants of 100 largest U.S. cities

Rank 1860 1910

1 New York 813, 669 New York 4, 766, 883

2 Philadelphia 565, 529 Chicago city 2, 185, 283

3 Brooklyn 266, 661 Philadelphia 1, 549, 008

4 Baltimore 212, 418 St. Louis 687, 029

5 Boston 177, 840 Boston 670, 585

6 New Orleans 168, 675 Cleveland 560, 663

7 Cincinnati 161, 044 Baltimore 558, 485

8 St. Louis 160, 773 Pittsburgh 533, 905

9 Chicago 112, 172 Detroit 465, 766

10 Buffalo 81, 129 Buffalo 423, 715

20 Milwaukee 45, 246 Kansas 248, 381

30 Syracuse 28, 119 Toledo 168, 497

40 New Bedford 22, 300 Paterson 125, 600

50 Petersburg 18, 266 Albany 100, 253

60 Poughkeepsie 14, 726 Springfield 88, 926

70 Harrisburg 13, 405 St. Joseph 77, 403

80 Elizabeth 11, 567 Evansville 69, 647

90 New London 10, 115 Charleston 58, 833

100 Wilmington 9, 552 South Bend 53, 684

Rank 1960 2010

1 New York 7, 781, 984 New York 8, 175, 133

2 Chicago 3, 550, 404 Los Angeles 3, 792, 621

3 Los Angeles 2, 479, 015 Chicago 2, 695, 598

4 Philadelphia 2, 002, 512 Houston 2, 099, 451

5 Detroit 1, 670, 144 Phoenix 1, 445, 632

6 Baltimore 939, 024 Philadelphia 1, 526, 006

7 Houston 938, 219 San Antonio 1, 327, 407

8 Cleveland 876, 050 San Diego 1, 307, 402

9 Washington 763, 956 Dallas 1, 197, 816

10 St. Louis 750, 026 San Jose 945, 942

20 Buffalo 532, 759 El Paso 649, 121

30 Newark 405, 220 Baltimore 620, 961

40 St. Paul 313, 411 Colorado Springs 416, 427

50 Tulsa 261, 685 Wichita 382, 368

60 Albuquerque 201, 189 Lexington-Fayette 295, 803

70 Gary 178, 320 Newark 277, 140

80 Bridgeport 156, 748 Laredo 236, 091

90 Montgomery 134, 393 North Las Vegas 216, 961

100 Greensboro 119, 574 San Bernardino 209, 924
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Table A.2

Results of OLS estimation

year scaling range Zipf model k P1−k q rse R2 D

1840 100 two 0 12.4715 0.8937 0.0192 0.9911 1.1090

1850 100 two 0 13.1002 0.9174 0.0192 0.9888 1.0779

1850 100 two* 1 13.4222 0.9933 0.0235 0.9895 0.9962

1860 100 one 0 13.6844 0.9904 0.0138 0.9944 1.0040

1870 100 one 0 14.0502 0.9779 0.0171 0.9921 1.0146

1880 100 one 0 14.3784 0.9829 0.0186 0.9920 1.0093

1880 100 three 1 14.7240 1.0644 0.0093 0.9929 0.9328

1890 100 two 0 14.7002 0.9510 0.0233 0.9921 1.0432

1890 100 three 1 15.0385 1.0310 0.0131 0.9951 0.9652

1900 100 two 0 14.9145 0.9461 0.0150 0.9936 1.0502

1910 100 two 0 15.1230 0.9119 0.0189 0.9912 1.0870

1920 100 two 0 15.3544 0.9078 0.0146 0.9949 1.0959

1930 100 two 0 15.5427 0.9032 0.0121 0.9948 1.1014

1940 100 two 0 15.6018 0.9075 0.0135 0.9940 1.0954

1950 100 two 0 15.7199 0.9000 0.0142 0.9896 1.0996

1960 100 two 0 15.6553 0.8381 0.0161 0.9850 1.1753

1970 100 two 0 15.6316 0.8083 0.0173 0.9800 1.2124

1980 100 two 0 15.5046 0.7688 0.0172 0.9857 1.2822

1990 100 two 0 15.4963 0.7445 0.0173 0.9873 1.3261

2000 100 two 0 15.5892 0.7463 0.0157 0.9889 1.3252

2010 100 two 0 15.5968 0.7256 0.0161 0.9820 1.3563

2016 100 two 0 15.6694 0.7268 0.0147 0.9902 1.3624

Larger datasets

1990 587 (601) two 0 15.5562 0.7650 0.0045 0.9996 1.3026

2000 601 (601) two 0 15.5728 0.7423 0.0042 0.9981 1.3446

2010 299 (300) two 0 15.6133 0.7294 0.0071 0.9961 1.3656

2016 300 (300) two 0 15.6779 0.7298 0.0065 0.9968 1.3659

Notes: k: scaling parameter, P1−k: size of the (1-k)th-city or size of the largest city P1 for k = 0, q: scaling exponent,
rse: robust standard error, R2: value of goodness of fit, D: fractal dimension of urban hierarchies, two∗: special form
of the two-parameter Zipf model

Table A.3

Classification of 100 largest cities in levels (1880 and 2016)

1880 2016

Level City Number Average City Size City Number Average City Size

1 1 8537673.00

2 2 3340640.00

3 4 780829.25 4 1744720.25

4 8 258424.13 8 1020569.88

5 16 99894.31 16 678376.50

6 32 41654.16 32 410409.28

7 40 24470.05 37 256965.24
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Table A.4

Validation Results

year range P1−k q s R2 DOLS DRMA DRMA −DOLS

1840 1 to 6 12.4574 1.0032 0.0597 0.9860 0.9829 0.9898 0.0070

1850 3 to 6 14.0423 1.2783 0.0840 0.9914 0.7756 0.7789 0.0034

1860 1 to 6 13.6340 1.0935 0.0155 0.9992 0.9137 0.9141 0.0004

1870 1 to 6 13.8666 1.0238 0.0324 0.9960 0.9728 0.9748 0.0020

1880 3 to 6 15.4551 1.4057 0.0533 0.9971 0.7093 0.7104 0.0010

1890 3 to 6 15.6590 1.3299 0.0951 0.9899 0.7443 0.7481 0.0038

1900 1 to 6 14.9061 1.0670 0.0604 0.9874 0.9254 0.9313 0.0059

1910 1 to 6 15.1616 1.0509 0.0784 0.9782 0.9308 0.9411 0.0103

1920 1 to 6 15.3536 1.0285 0.0647 0.9844 0.9571 0.9647 0.0076

1930 1 to 6 15.5641 1.0299 0.0536 0.9893 0.9606 0.9658 0.0052

1940 1 to 6 15.6100 1.0283 0.0569 0.9879 0.9607 0.9666 0.0059

1950 1 to 6 15.6713 0.9942 0.0555 0.9877 0.9935 0.9996 0.0062

1960 1 to 6 15.6424 0.9422 0.0663 0.9806 1.0408 1.0510 0.0102

1970 1 to 6 15.6347 0.9147 0.0762 0.9730 1.0637 1.0784 0.0147

1980 1 to 6 15.5572 0.8920 0.0680 0.9773 1.0957 1.1083 0.0127

1990 1 to 6 15.5846 0.8800 0.0709 0.9747 1.1076 1.1218 0.0143

2000 1 to 6 15.6673 0.8777 0.0679 0.9766 1.1127 1.1260 0.0133

2010 1 to 6 15.6730 0.8540 0.0681 0.9752 1.1420 1.1564 0.0144

2016 1 to 6 15.7209 0.8448 0.0640 0.9775 1.1571 1.17034 0.0132

Larger datasets

1990 1 to 9 15.5061 0.8225 0.0323 0.9893 1.2028 1.2093 0.0065

2000 1 to 9 15.5790 0.8120 0.0322 0.9891 1.2181 1.2248 0.0067

2010 1 to 8 15.6121 0.8052 0.0397 0.9856 1.2240 1.2329 0.0089

2016 1 to 8 15.6674 0.8022 0.0369 0.9875 1.2310 1.2388 0.0078

Notes: P1−k: size of the (1-k)th-city or size of the largest city P1 for k = 0, q: scaling exponent, s: standard error, R2:

value of goodness of fit, DOLS : fractal dimension of urban hierarchies (OLS-estimation), DRMA: fractal dimension of
urban hierarchies (RMA-estimation)

16


	7232abstract.pdf
	Abstract




