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1 Introduction

The provision of a long-lived public good depends on the ability of agents

who make current decisions to cooperate with each other, and on the extent

to which they care about the welfare of the not-yet born. The determination

of climate policy illustrates these two considerations, but similar issues arise

in many other settings. I develop a model that helps to assess the relative

importance, for the provision of a public good, of contemporaneous coopera-

tion and intergenerational altruism. The protection of the climate, like the

provision of other long-lived goods, is generically a coordination problem,

with many equilibria. The relative importance of contemporaneous cooper-

ation and intergenerational altruism may depend on which equilibrium one

examines. I study a model that imbeds overlapping generations in a dif-

ferential game, and then specialize to the climate setting. The overlapping

generations component is critical for disentangling impatience with regard to

one’s own future consumption, from altruism with regard to unborn genera-

tions. The differential game component is critical for representing different

degrees of contemporaneous cooperation.

Two decades of negotiation confirm the importance and the difficulty of

getting policymakers to cooperate on climate policy. A recent literature

emphasizes the role of discounting in selecting climate policy (Stern, 2006;

Nordhaus, 2007, Weitzman, 2007). The UK and France currently use low

social discount rates to evaluate long-lived public projects, and the US Envi-

ronmental Protection Agency (2010) is considering a similar proposal. These

reforms promote intergenerational equity. Even if such reforms were widely

adopted, to what extent would they affect the equilibrium protection of the

global commons, at given levels of international cooperation? How would

increased international cooperation affect climate policy, for a given level of

intergenerational altruism?

The climate problem is intergenerational. If agents currently alive dis-

count their own future utility and the utility of the not-yet born at con-

stant but different rates, then the aggregation of their preferences implies

non-constant discounting, and time-inconsistent preferences. The existence

of different tribes (countries, in the climate policy context) complicates the

policy choice. I consider the case where there are  ≥ 1 tribes, each of which
has an equal share of the world’s fixed population. The current population

of each tribe consists of many generations. Members of a tribe care about

their own utility stream and — to the extent that they have intergenerational
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altruism — about the utility streams of future tribal members. Within each

tribe and at each point in time, a social planner aggregates the preferences

of tribal members currently alive.

When there is a single tribe in which agents discount their own and the

unborn generations’ utility at different rates, the result is the familiar problem

of non-constant discounting (Strotz, 1956; Laibson, 1997). When there are

multiple tribes, each with a constant discount rate, the result is a differential

game (Long, 2010; Haurie, Krawczyk and Zaccour, 2012). With  tribes and

non-constant discounting, the result is a game in which each social planner

is distinguished by the tribal index and the time that she acts. The different

tribes’ social planners alive in the same period act simultaneously, and the

social planner of any tribe acts before the future social planners. I consider

a symmetric Markov Perfect Equilibrium (MPE) to a symmetric game: the

optimal action of the social planner in a particular tribe at a particular point

in time is a function of only the payoff-relevant state variable.

Most overlapping generations (OLG) models assume either that the in-

dividual lifetime is a random variable (Yaari, 1965; Blanchard, 1985; Calvo

and Obstfeld, 1988) or a finite known parameter, as in Diamond (1965)’s

two period model or in Schneider, Traeger, and Winkler (2010)’s continuous

time setting. I show that the discount rates in the two models, where agents’

lifetimes are either exponentially distributed or a known constant, are always

similar in the short run; the two rates might differ greatly at times close to

or beyond the finite known lifetime. If current actions are insensitive to

changes in distant discount rates, and if the deterministic lifetime is long,

the two models are likely to be observationally similar. Thus, if the agents’

lifetime corresponds to their biological span, the two models are likely to

yield similar equilibria. If instead, the agents’ lifetime corresponds to the

time they are in political office, the two models may produce quite different

equilibria.

A “paternalistically altruistic” agent cares about the utility flows enjoyed

by future generations, but does not take into account that each of those

agents also cares about the utility flows of subsequent agents. The “purely

altruistic” agent does take into account the fact that her successors also value

their own successors’ utility flows (Ray, 1987; Andreoni, 1989; Saez-Marti and

Weibull, 2005). If lifetime is exponentially distributed, I find that the models

of paternalistically and purely altruistic agents are observationally equivalent.

The two types of agents have the same preferences if the discount rates that

they use to evaluate their successors’ payoffs differ by the mortality rate.
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After presenting the non-constant discount rates that arise in this OLG

setting, I describe the game amongst the tribes and across the generations,

present the equilibrium conditions, and discuss the multiplicity of MPE.

When agents are “very altruistic”, these MPE can be Pareto ranked, and

it is possible to support a “good” outcome.

Because the focus of this paper is to assess the relative importance of

altruism and contemporaneous cooperation, in determining the equilibrium

climate policy, I need to solve, rather than merely describe the equilibrium.

For this reason, I use a linear-quadratic model, which is simple and involves

only a few parameters. This parsimony and transparency is particularly valu-

able in light of the uncertainty about the true costs and benefits of reducing

carbon emissions. The linear-quadratic model has been widely used to study

differential games (with a constant discount rate) in both industrial organi-

zation (Fershtman and Kamien, 1987; Reynolds, 1987) and natural resource

economics (van der Ploeg, 1992; Dockner and Long, 1993; Wirl, 1994); it

has also been used to study quasi-hyperbolic discounting in the one-agent

setting (Karp 2005).

I find that the relative importance of intergenerational altruism and con-

temporaneous cooperation is sensitive to the type of equilibria that one con-

siders. With a linear equilibrium, the degree of altruism is relatively unim-

portant at relevant levels of contemporaneous cooperation. In contrast,

with non-linear equilibria, the degree of altruism is especially important at

relevant levels of contemporaneous cooperation.

2 Discounting

The objective of this paper is to evaluate the relative influence, on investment

in a public good, of agents’ attitudes toward future generations and on the

ability of different groups to cooperate at a point in time. I emphasize

the case where lifetime is exponentially distributed and agents’ altruism is

paternalistic. To determine whether results are sensitive to model details, I

consider two alternatives. The first replaces the assumption of paternalistic

with pure altruism, under exponentially distributed lifetime. The second

alternative replaces the assumption of exponentially distributed lifetime with

a known finite lifetime, under paternalistic altruism. In order to make this

paper self-contained, but without distracting from its main message, I collect

derivations of the discount functions in an appendix. Ekeland and Lazrak
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(2010) provide the formula for the case of exponentially distributed lifetime

and paternalistic altruism, but the two alternatives are new.1

In every case, the population is constant, so the birth rate equals the death

rate. The task of this section is to construct and analyze the discount factor

used to aggregate utility streams. For an arbitrary sequence of bounded

utility flows, {}∞=, I find the discount factor  () for which welfare of
a social planner at  is

R∞


 () . The discount factor  () depends

on the both the type of altruism and on whether lifetime is exponentially

distributed or deterministic. There is no tribal index here, because I consider

a representative tribe.

2.1 Exponential lifetime, paternalistic altruism

Consider a public project, e.g. protection of the climate system. An agent’s

utility flow at a point in time depends on the current stock of the public good

(e.g., the stock of greenhouse gasses) and on her tribe’s current investment

in that good (e.g., abatement). This investment cost is shared equally by all

tribal members then alive, so at time  they all have the same utility flow, .

Agents’ welfare consists of a selfish and an altruistic component. The selfish

component equals the present discounted value of the expected flow of the

agent’s utility, using a constant pure rate of time preference, . The altruistic

component consists of the agent’s evaluation of her successors’ stream of

utility, which she discounts at rate . In this paper, “altruism” refers only to

benevolence toward one’s descendants, not toward current or future members

of other tribes. At the cost of introducing another parameter, one could

distinguish between intergenerational altruism within and across tribes. The

agent’s mortality rate is , so  ≡ +  is the agent’s risk-adjusted pure rate

of time preference.

The memoryless feature of the exponential distribution means that all

agents alive at a point in time have the same distribution function for their

1Several papers use the sum of exponentials to represent non-constant discounting

(Li and Lofgren 2000), (Gollier and Weitzman 2010), (Zuber 2010), and (Jackson and

Yariv 2011). The convex combination of exponentials may arise because different agents

want to use different discount factors to evaluate future flows, and the decisionmaker takes

a weighted sum of their preferences; or it may arise because the decisionmaker is uncertain

about the correct discount rate, and therefore takes the expectation of the associated

discount factors. Ekeland and Lazrak (2010)’s motivation is quite different: the OLG

structure gives rise to the sum (but not necessarily convex combination) of exponentials.
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remaining lifetime. Because there is no private accumulation in this model,

all agents alive at a point in time are identical. In this case, there is a repre-

sentative agent in the usual sense. The paternalistic agent cares about her

successors’ utility steam, but does not take into account that each successor

also cares about their own successors’ utility stream. The purely altruistic

agent (studied below) does take into account the fact that her successors care

about their own successors’ utility streams.

The discount factor for the paternalistic agent with exponentially distrib-

uted lifetime is

() =

µ
− 

− 

¶
− − 

− 
− (1)

2.2 Robustness

Both because of its intrinsic interest, and also to gauge the sensitivity of

the results to assumptions about agents’ lifetime and their type of altru-

ism, I consider two alternatives to the model with paternalistic altruism and

exponentially distributed lifetime.

2.2.1 Pure altruism, exponentially distributed lifetime

Deriving the discount factor for the representative agent under pure altruism

is more complicated than under paternalistic altruism. In the latter case,

one can simply write down the discount factor from its definition, and then

simplify by changing the order of an integration to obtain equation (1). With

pure altruism, in contrast, it is necessary to solve a recursion. I achieve this

in two stages. First, I begin with a discrete time model, in which each period

lasts for  units of time. I solve the resulting discrete time recursion, to obtain

the discrete time discount function for the representative agent. Taking

the limit as  → 0 gives the continuous time discount function under pure

altruism. Comparing that function with the expression for () in equation

(1) establishes an isomorphism between paternalistic and pure altruism:

Proposition 1 Suppose that the agent with pure altruism discounts future

agents’ welfare at rate 0, and that the agent with paternalistic altruism dis-

counts future agents’ utility at rate . Both have exponentially distributed

lifetimes with mortality rate  and the pure rate of time preference . The

two agents have the same preferences if and only if 0 = + .

5



The following corollary is a consequence of Proposition 1 and the fact that

for  () given by equation (1), 


 0 for   0:

Corollary 1 Given  and the same preference parameters ( ), the agent

with paternalistic altruism discounts the future flow of utility more heavily

than the agent with pure altruism.

This comparison is not surprising: the agent with pure altruism cares about

future utility flows both because they affect the future generations that di-

rectly experience those flows, and because they affect the welfare of earlier

generations that care about those future generations. In contrast, the agent

with paternalistic altruism cares only about the direct affect of future utility

flows on the agents who experience them.

2.2.2 Paternalistic altruism, known finite lifetime

Each agent lives for  = 1

years. This equality means that the known

finite lifetime in this setting equals the expected lifetime in the exponentially

distributed setting. Thus, the two models are directly comparable.

With deterministic lifetimes, agents alive at a point in time are different:

the older ones will die sooner than the younger ones. In this setting, I assume

that the representative agent (social planner) at a point in time is utilitar-

ian; she puts equal weight on the preferences of all tribal members currently

alive. Bergstrom (2006) points out that when agents feel benevolence to-

ward others who share both the costs and the benefits of a public good, it is

necessary to count both the “sympathetic costs” as well as the “sympathetic

benefits” (those arising from the feeling of benevolence). If agents are iden-

tical, as in the exponentially distributed case, the sympathetic costs offset

the sympathetic benefits, so benevolent feelings toward other tribal members

currently living would not affect the cost benefit calculation. In the case of

deterministic lifetime, where agents are not identical, I ignore any benevolent

feelings that an agent has for others currently alive. Those agents can speak

for themselves, and the social planner gives each of their preferences equal

weight. The unborn (future) tribal members enjoy the benefits of the public

good but do not share the current investment costs, and they cannot directly

influence the tribe’s current social planner. Therefore, benevolent feelings

toward these agents affect the cost benefit calculation.

With a finite lifetime,  , the structure of the discount function differs

for    and    . For    , some of the agents currently alive (at
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time 0) will still be alive. Those agents continue to benefit from the utility

flow, and that utility flow contributes to the selfish component of the welfare

of the current (time 0) representative agent. For    , all of the agents

alive at time 0 will have died, so the representative agent at time 0 places a

positive weight on the utility flow at    only to the extent that agents

are altruistic ( ∞).
For finitely lived agents, the discount factor is2

() =

⎧⎨⎩ −
³
1−−(−)
 (−) + −



´
for  ≤ 

−
¡
(−) − 1¢ 1

 (−) for  ≥ 
(2)

2.3 Discount rates: a comparison

Here I compare the discount rates under the baseline model (exponentially

distributed lifetime, paternalistic altruism) and under the finite lifetime al-

ternative. In view of the isomorphism between the types of altruism (under

the exponential distribution), a separate treatment of the agent with pure

altruism is unnecessary.

The discount rate, , associated with the discount factor in equation (1)

is

−


1


≡ () =

−+  + −(−)

−+  + −(−)
 (3)

The definition of the discount rate  () implies

for    ∞ :
 ()


 0;  (0) = ; lim

→∞
 () = ; (4)

|=∞ () =  |= () =  |=0 () = 


 + 
; (5)

for 0     :
 ()


 0;  (0) = ; lim

→∞
 () = . (6)

Equation (4) states that if the current generation cares less about future

generations’ welfare than about its own, but has some concern for the future

(    ∞), the discount rate increases over time from the pure rate of

time preference, , to the risk adjusted rate,  =  + . These limits are

2This model can be viewed as a generalization of the   of quasi-hyperbolic discounting

(Laibson 1997). That relation is easiest to see in a discrete time setting; see Appendix

A.1.3
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independent of . That is, for finite , a finite value of    shifts down

the entire trajectory of the discount rate, relative to the risk adjusted selfish

rate. For   , the discount rate falls, as with hyperbolic discounting

(equation 6), and in this case the discount factor is a convex combination of

two exponentials.3

Equation (5) provides the discount rate for three limiting values of : ∞
(using the compactified real line), , and 0. The fact that |=∞ () = 

∀ ≥ 0 whereas  (0) =  for   ∞ means that there is a discontinuity in

 () at  =∞.4 The discount rate is constant over time for  =∞ and for

the borderline case where the agent cares as much about future generations’

utility as about her own ( = ).

The discount rate under a finite lifetime is:

 () =

⎧⎨⎩
−(−)−(−)(−)−
−(−)−1−(−)(−) for  ≤ 

 for  ≥ 
(7)

The shape of the trajectory of the discount rate, for  ∈ (0  ), depends on
whether  is greater or less than . For  ∈ (∞), the discount rate increases
from  to  as  increases. For  ∈ [0 ) the discount rate falls from  to ,

and for  =  the discount rate is constant. For  = 0, the discount rate is

2 −
+(−)−1 for  ≤  and 0 for    . In the other limiting case, where

 = ∞, the discount rate is  () =  + 1
− for 0 ≤    and infinite for

 ≥ 0. As with exponentially distributed lifetimes, there is a discontinuity
at  =∞.
The following corollary summarizes the comparison of the discount rates

under exponentially distributed and deterministic lifetimes for paternalistic

agents.

3Comparison of the last parts of equations (4) and (6) show that the asymptotic (as

 → ∞) discount rate depends on whether  ≶ . For   , concern for far distant

generations dies out more quickly than the concern for one’s own future utility flow, so

the asymptotic discount rate equals the risk adjusted rate. For   , self-interest dies

out more quickly than altruism, so the asymptotic discount rate equals .
4A calculation shows that for    the 1 norm  is continuous in :

 () ≡
Z ∞
0

( −  ())  = ln

µ
− ( + )

− 

¶
=⇒ lim

→∞
 () = 0 and  (∞) = 0
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Corollary 2 (i) The discount rates under paternalistic altruism with expo-

nentially distributed or deterministic lifetimes are constant and equal to each

other iff: (a)  = , where  = ; or (b)  = ∞ ( = 0), where  = ; or

(c)  = 0 ( = ∞), where  = . (ii) For  = ∞ the discount rate under

exponentially distributed lifetime is constant at  =  + , and the discount

rate under a deterministic lifetime begins at + 1

= +  and approaches∞

as  →  . (iii) For finite  and for positive  close to 0 and for  ≥  , the

discount rate for agents with exponentially distributed lifetime is greater than

the discount rate for agents with deterministic lifetime if and only if   .

(iv) For    the difference between the discount rates approaches − − 

as →∞ and for    the difference approaches 0.

Proof. Parts (i.a), (ii), (iv) and the claim in part (iii) regarding  ≥ 

merely summarize the previous discussion. Parts (i.b, i.c) are by inspection.

Verifying the claim in part (iii) regarding positive  close to 0 uses a third

order expansion of the discount factors evaluated at  = 0: the discount

factor with exponentially distributed lifetimes minus the discount factor with

deterministic lifetimes equals 1
6
2 (− ) 3 +  (4).

This corollary suggests that in the cases where  ≈ , or    or  ≈
 +  the trajectories of the discount rates are “quite similar”, so that the

preferences of the two types of agents (with deterministic or exponentially

distributed lifetimes) are also quite similar. However, if    +  the

discount rates, and thus preferences, are quite dissimilar in the two cases for

 ≥  ; for small  the discount rates are similar. If  is large, then the

fact that the discount rates are dissimilar for  ≥  is likely to be rather

unimportant for current decisions. In summary, unless  is large and  is

small, preferences under the two models are “quite similar”.

Parts (i.b, i.c) show the importance of the overlapping generations struc-

ture. If  = ∞ ( = 0) a tribe consists of a succession of agents, each of

whom lives for a single instant, and has a constant discount rate . At the

other extreme,  = 0 ( = ∞) a tribe consists of an infinitely lived agent,
with a constant discount rate . For these two limiting cases, there is no

time consistency problem. For small  and 0   ∞ agents would be will-

ing to incur costs to transfer utility to the distant future, but their incentive

to do so is limited by the fact that they know that their future selves would

consume some of the intended transfer.

Figure 1 shows the discount rates in the two models, for  = 002 = 

(so  = 50). The solid curves (labelled ) correspond to exponentially
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Figure 1: Discount rates (d.r.) for =0.02=r= 1

. Solid curves (labelled E)

correspond to exponentially distributed lifetime and dashed curves (labelled F)

correspond to fixed lifetime. Numerical values in label show value of .

distributed lifetime, and the dashed curves (labelled  ) correspond to fixed

lifetime. The increasing curves correspond to  = 006 and the decreasing

curves correspond to  = 001. This figure illustrates Corollary 2 and the

comments that follow it.

The qualitative differences illustrated in Figure 1 follow naturally from the

underlying assumptions of the two models. With exponentially distributed

lifetime, the probability that an agent is alive at a point in time in the future

decreases at a constant rate. Therefore, even if she cares nothing about the

unborn generations, her discount rate for future utility flows never rises above

 + . In contrast, in the deterministic lifetime case, all agents currently

alive will be dead within  years, so the utilitarian agent who aggregates

the preferences of tribal members currently alive puts weight on utility flows

after  years only to the extent that agents currently alive care about future

generations. Completely selfish agents put no weight on the welfare of the

unborn ( =∞). A smaller value of  implies a higher level of altruism.

The utility flow  periods in the future may be shared by some agents

currently alive and also by agents born  periods in the future. The agent

currently alive puts the same weight on the utility flow received by her future

self and the not-yet born if and only if  = . However, for any   0, the

agent alive today puts lower value on the lifetime welfare of an agent born

in the future, the further in the future that agent is born. A plausible

requirement of ethical behavior is to treat the present discounted value of
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the stream of utility of all agents symmetrically, regardless of when they are

born (Ramsey 1928). That requirement implies  = 0 (not  = ).

3 The game

Both the game and the equilibrium are easiest to describe in a discrete time

setting, where the equilibrium conditions can be obtained using elementary

methods. The discrete time analog provides at least as good a representation

of the world as does the continuous time version. For these reasons, I study

the model by taking formal limits of a discrete time model.

There are  symmetric tribes, each of which consists of a sequence of

overlapping generations of the type considered above. A larger value of 

corresponds to greater fragmentation, or less cooperation, amongst agents at

a point in time. At time  a social planner for tribe  chooses the action .

This action affects ’s current utility flow and the evolution of a state variable,

, common to all tribes. For example,  is a climate-related variable, such

as the stock of greenhouse gasses (GHG) or average temperature, and  is

tribe ’s GHG emissions or abatement at time . In the interest of simplicity,

I assume that tribe ’s flow of utility at ,  ( ;), depends only on the

state variable and ’s action. (Including ’s current action in ’s utility flow

makes it possible to include leakage in a climate-related model or to consider

the case of cross-tribal altruism.) In this symmetric environment, all tribes

have the same utility function and discount factor. The state variable evolves

according to

+ −  =  (x;) , with x=(1 2) 

The parameter  in the growth function,  , and the utility function, ,

makes it possible to consider a fragmentation of the economy (larger ) that

leaves unchanged the set of feasible utility. A change in  has no intrinsic

effect on aggregate (or per capita) utility and stock flows, but it does alter

the equilibrium decisions, thereby altering the equilibrium aggregate utility

and stock flows:  has a strategic but not an intrinsic effect on outcomes.

The payoff to the social planner in tribe  at time  is the present dis-

counted value of the stream of utility:

∞X
=0

( ; ) (+  + ;)  (8)
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where the discount factor depends on whether lifetime is exponentially dis-

tributed or deterministic. In this discrete time setting, agent  is the social

planner in tribe  at period . The strategic interactions in this game occur

amongst different tribes and across periods. Agents  and  move simul-

taneously (choosing  and , respectively); for all   , agent  moves

before agent  .

I consider a symmetric stationary pure strategy Markov Perfect Equilib-

rium (hereafter, “MPE”), a function  () that satisfies the Nash condition:

If the stock at  is  and agent  believes that agents , ∀ 6= , use the

decision rule  =  (), and that agents  for ∀ and    will use the

decision rule  =  (), then  =  () is the optimal action for agent

. The superscript  reminds the reader that a function corresponds to a

particular length of a period in the discrete time setting, .

The symmetry of this problemmakes it possible to consider a single tribe’s

problem, taking as given the behavior of all other tribes. Let the current

period index be , and suppose that ∀ ≥  and  6=  agents  believe that

agents  will use the policy  =  ( ). That is, each of the succession

of social planners in tribe  expects each of the succession of social planners

in other tribes to use this policy rule. With these beliefs, agent  expects

the state to evolve according to

+ −  =   (   )  with  (   ) ≡  (  −1
 ( )   ;)  (9)

∀  ≥ , where −1 is an −1 dimensional vector consisting of 1’s. If agents
 ∀ and  ≥  use the policy  ( ), then the value of the program for the

agent who faces the current state  is

 () =

∞X
=0

( ; )
¡
∗+  


¡
∗+

¢
;
¢
 (10)

where ∗ is the solution to equation (9) when all agents use the policy rule
 and the initial condition is .

The payoff in (8) with the equation of motion (9) are the ingredients of the

game amongst the sequence of social planners in tribe . These planners play

a game rather than solving a standard control problem, because the function

( ; ) is not exponential: as a consequence, the sequence of actions that

is optimal for an agent at a point in time is not optimal for her successors.

The social planner at a point in time can choose the action at that time, but

cannot commit her successors to particular actions. She therefore chooses
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the action that maximizes the discounted flow of current and future utility,

understanding that future actions are chosen according to .

The continuous time payoff and equation of motion for tribe  areR∞


(− )( ;) and


≡ ̇ =  ( )

with  ( ) ≡  ( −1 ()  ;) 
(11)

where  () is a MPE policy function in the continuous time setting, and

the discount factor, , is given by equation (1) in the case of agents with

exponentially distributed lifetime, and by equation (2) in the case of agents

with deterministic lifetime.

A larger value of  means that the time  social planner in a particular

tribe internalizes a smaller fraction of the effect of her actions. A larger

value of  means that this social planner internalizes a smaller fraction of

the future effect of her actions. The point of this paper is to determine the

relative sensitivity of equilibrium investments in a public good, to changes

in  and .

3.1 Equilibrium conditions

Karp (2007), building on Harris and Laibson (2001), finds the formal limit,

as → 0, of the equilibrium conditions to the sequential game defined by the

payoff in (10) with the equation of motion (9) for the one-tribe ( = 1) case.

These conditions require that  () ≡ lim→0  () and its first derivative

exist — an assumption that can be checked given a particular equilibrium.

These conditions can be applied directly to the case of   1: when the

succession of planners in tribe  take as given other tribes’ policy rule, tribe

 has a standard problem with non-constant discounting. The resulting

simplicity relies on the assumption of a symmetric (across both tribe and

time indices) equilibrium.

The equilibrium conditions differ in the two cases corresponding to   

and    with exponentially distributed lifetime (because lim→∞  () differs

in the two cases), and in the case where agents have deterministic lifetimes

(because the function , introduced below, has a different form here). For

 =  with both deterministic and exponentially distributed lifetimes, and for

 =∞ with exponentially distributed lifetime, the discount rate is constant.

In these cases, the tribes play a standard differential game, i.e. one without

the strategic interactions within a tribe, across periods. I provide details
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for the model with exponentially distributed lifetime and 0   ≤  (where

lim→∞  () = ), relegating the other two cases to Appendix B.1.

Dropping the agent index  (because of symmetry) and the superscript 

(because I now consider the continuous time limit) Proposition 1 and Remark

1 of Karp (2007) imply that  () satisfies the necessary condition to the

following “fictitious” optimal control problem with constant discount rate 

() = max

Z ∞

0

− (( ;)−())  subject to ̇ =  ( )

(12)

with the side condition (definition):

() = ( − )

Z ∞

0

−(∗   (
∗
 ) ;) (13)

The tribe’s utility flow on the equilibrium path is  (   () ;), and ∗
is the solution to the differential equation in (12) when all agents use the

decision rule  (). The function  can be interpreted as an annuity, which

if received in perpetuity and discounted at the rate −, equals the present

value of the stream of future utility, discounted at the rate .

This model includes familiar special cases. For   1, the endogenously

determined function  ( ) =  ( −1 ()  ;) depends on the policies
of the other  − 1 agents; those agents do not exist if  = 1, in which case
 ( ) =  ( ;1), an exogenously given function. For  = ,  ≡ 0 and
the model collapses to a standard (constant discounting) differential game

for   1 or a control problem for  = 1.

3.2 Nonuniqueness

In general, the equilibrium to this game is not unique. Tsutsui and Mino

(1990) note the existence of a continuum of stable steady states (an open

interval) in the differential game with constant discounting when decision

rules are differentiable. For each point in this interval there is an equilibrium

policy function, defined at least in the neighborhood of that point. The

economic explanation for this multiplicity in the differential game is that the

decision whether to remain in a particular steady state depends on an agent’s

beliefs regarding the actions that rivals would take if a single agent were to

drive the state away from that steady state. The Markov perfect equilibrium

conditions do not pin down these beliefs. In a standard optimal control
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problem, the envelope theorem eliminates that kind of consideration, because

the first order welfare effect of a deviation from the steady state is 0. This

theorem is not applicable in the differential game, because rivals’ actions do

not maximize an agent’s welfare. In this sense, the transversality condition

typically applied to study autonomous control problem is “incomplete”.

The same kind of consideration applies in the one-tribe model with non-

constant discounting. Karp (2007) and Ekeland and Lazrak (2010) charac-

terize the set of stable steady states in this setting. When   1 and the

discount rate is non-constant, there are two sources of multiplicity of steady

states, so we would expect the equilibrium to be unique (within the class

that induce differentiable value functions) only under special circumstances.

The multiplicity of equilibria means that there is a coordination problem

both across tribes and across generations. Some MPE may Pareto dominate

others.

Most applications use specific functional forms, because of the difficulty

of obtaining general results outside the steady state. Models with loga-

rithmic utility and Cobb Douglas growth functions have been used to study

both differential games (Levhari and Mirman 1980) and the non-constant

discounting problem with  = 1 (Barro 1999). The Introduction notes the

widespread use of the linear-quadratic model; some papers consider only the

linear equilibrium, and several discuss the multiplicity of equilibria. (Krusell

and Smith (2003) and Vieille and Weibull (2009) discuss multiplicity in dif-

ferent settings.)

Ekeland, Karp, and Sumaila (2012) study the  = 1 case using a model

that is linear in the control variable, but otherwise allows general functional

forms. That paper uses the exponentially distributed lifetime model, but

all of its results carry over to the model with deterministic lifetime. Within

the class of equilibria that gives rise to a differentiable value function, the

equilibrium is unique: the stock follows a most rapid approach path to a

steady state, which for  ∞ is independent of .

This linear-in-control model also has a simple equilibrium for   1; in

this equilibrium, a bang-bang policy drives the state variable (e.g. the stock

of fish) to a level at which the flow of utility is 0. If all other agents use a

bang-bang control to drive the state to particular steady state ∞ at which

the flow of utility is strictly positive, then agent  has an incentive to undercut

them (e.g. to harvest more than the level that sustains that stock). Thus,

the only steady state is a level associated with a zero utility flow. In this

example, the unique equilibrium is completely insensitive to (finite)  and
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extremely sensitive to a change from  = 1 to  = 2.5

3.3 Interpretation of this game

The purpose of this model is to provide intuition about how limited coop-

eration amongst contemporaneous agents, and different levels and types of

intergenerational altruism, interact to affect equilibrium decisions. Game

theoretic models like this one are not normative. However, a limiting case

of this model is “close” to being normative. Here I consider the agent with

exponentially distributed lifetime and paternalistic altruism.

For  = 1, there is no conflict amongst contemporaneous agents and for

 =  or  =∞ the time inconsistency problem also vanishes. These para-

meter values produce a standard optimization problem, rather than a game,

but neither provides a reasonable normative model. The ethical objection to

 = ∞ is obvious, and the ethical objection to  =  is that the evaluation

of an agent’s utility stream should not depend on her date of birth.

The choice  = 0 has a stronger ethical basis, and therefore (together with

 = 1) brings the model “closer” to being normative. Nevertheless,  = 0

and  = 1 implies non-constant discounting and therefore produces a game

across generations. An equilibrium outcome to that game is in general not

normative, for the same reason that the non-cooperative Nash equilibrium

to virtually any game is not normative.

For  = 0, the discount rate converges to 0, so unless the flow payoff

converges to 0 sufficiently rapidly, the payoff in the first line of equation (11)

is unbounded. Nevertheless, the equilibrium policy function may be well

defined even as  → 0, as in the model in Section 4. For small positive 

and bounded , the payoff is well defined and is approximately proportional

to the steady state utility flow, divided by  (see Appendix B.3):

Lemma 1 For any bounded utility flow  () that converges to ∞ 6= 0, and
given the discount factor under paternalistic altruism where lifetime is expo-

5In a MPE to the linear-in-control model, an agent knows that if she were to drive the

state away from a locally stable steady state, the equilibrium response of other agents is to

drive it back to this steady state as rapidly as possible. Consequently, the indeterminacy in

beliefs that gives rise to the multiplicity of stable steady states in the general setting, is ab-

sent here. These remarks rest on the requirement that the value function is differentiable;

with more general policies, many other MPE can exist (Dutta and Sundaram 1993).
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nentially distributed (equation (1)) and with arbitrarily small   0

(1− )



 lim

→0

µR∞
0

()()
∞


¶
 (1 + )






For small , the payoff in the steady state dominates the evaluation of welfare.

Denote the steady state that maximizes the steady state utility flow as

the “optimal static steady state” (the solution to max  ( ; 1) subject to

( ; 1) = 0). Suppose that this static optimization problem is concave,

so that levels of the state variable closer to the optimal static steady state

have higher utility levels. Consider the case where  is small and where the

MPE state trajectory does not approach the optimal static steady state. In

this situation, Lemma 1 together with the concavity assumption imply that

a deviation from the equilibrium that causes the state to move closer to the

optimal static steady state, is a Pareto improvement over the MPE. Each

generation prefers this deviation.

The following proposition states that for small , there is a MPE that

supports a steady state arbitrarily close to the optimal static steady state.

Proposition 2 Consider the class of differentiable MPE policy rules. For

 = 1 and for arbitrarily small positive , it is possible to support a MPE

steady state that leads to a utility flow within  of the utility level at the

optimal static steady state, provided that  is sufficiently small (but positive).

This proposition, together with Lemma 1 and the generic multiplicity of

equilibria (when policy functions are differentiable), implies that when  is

small but positive, a MPE that takes the state close to the optimal static

steady state Pareto dominates a MPE that takes the state further from the

optimal static steady state. The proof of the proposition uses the assumption

that the policy function is differentiable. Section 3.2 notes that for this class

of policy function, the set of MPE stable steady states is an open interval.

Proposition 2 states that a boundary of that interval moves close to the

optimal static steady state as  becomes small. We have no information

about the measure of the domain of a policy function that drives the state

close to this utility-maximizing level. If that measure is small, it is possible

to support such a steady state only for initial conditions close to it. In that

case, the existence of this steady state may have little practical importance.
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4 An application to climate policy

The state variable in the climate model, , is the atmospheric stock of carbon,

in parts per million (ppm), and the control variable, , is abatement, defined

as the percent reduction in BAU emissions. The equation of motion is linear

in  and the aggregate flow payoff is quadratic: −1
2

¡
2 +  ( − 280)2¢;

280 is the pre-industrial stock of carbon. The flow cost is the sum of a term

proportional to the square of abatement and to the square of the increase in

the stock relative to preindustrial levels, thus allowing damages to be convex.

Appendix C provides details of the calibration of the model, explains how 

enters the model, and explains how to compute both linear and non-linear

equilibria.

The model requires four calibration assumptions:

(i) The steady state absent anthropogenic emissions is 280 ppm.

(ii) The half-life of the atmospheric stock is 83 years.

(iii) The year 2100 BAU stock is 700 ppm, given 2010 stock of 380.

(iv) A numerical value for Ω ≡ (560−280)2
502

.

The 83-year half life is slightly less than the level used in DICE (Nordhaus

2008). The IPPC’s 2007 projections of year 2100 stocks range from 535 to

983 ppm. The assumptions imply that under BAU, the stock reaches 870

ppm after 200 years. That increase might be unrealistically high, but any

exaggeration may be offset by the fact that this model ignores the possibility

of catastrophic damages.

The parameter Ω equals the flow cost of doubling the stock of GHG,

relative to preindustrial levels, as a ratio of the flow cost of a 50% reduc-

tion in BAU emissions. In view of the amount of uncertainty about both

abatement costs and climate damages, I calibrate the model using the ratio

of these, instead of the coefficients  and .6 This approach makes it easy

to consider a range of beliefs about relative damages and costs, without the

need to consider independently changes in  and . Karp and Zhang (2006)

estimate an abatement cost parameter that matches (with 2 = 097 in a

6The tax  supports an abatement level . Note also that I use BAU as shorthand

for “doing nothing to reduce climate damages”. The model produces equilibrium (not

optimal) actions, and these could also be construed as “business as usual” — but that is

not how I use the term.
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psuedo-regression) the cost assumptions in Nordhaus (1994).7 That estimate

implies that a 50% abatement level reduces Gross World Product (GWP) by

about 1.1%. A low-to-moderate estimate of damages resulting from doubling

stocks, relative to pre-industrial levels, is 1.33% of GWP. These estimates

suggest that Ω = 133
112
≈ 12 is consistent with (at least some) previous mod-

eling efforts. I report results for Ω = 1 (low damages) and Ω = 3 (moderate

damages).

As a plausibility check for the range Ω ∈ [1 3], I use the fact that given
the first three calibration assumptions, the value of Ω determines the value

of the optimal static steady state. (Recall that this steady state, defined

above, equals the steady state stock that maximizes the steady state flow

payoff.) For Ω = 1, the optimal static steady state is 553 ppm and for Ω = 3

this level is 402 ppm.

The three parameters of particular interest are: (i) , an inverse measure

of the extent to which agents currently alive care about unborn generations

in their tribe; (ii) , a measure of the degree to which tribal fragmentation

impedes agents currently alive from cooperating on current policy; and (iii)

Ω, a measure of the damages from increased carbon stock relative to the costs

of abatement.

4.1 Discussion of this model

There is a long list of reasons why the linear-quadratic model cannot “accu-

rately” reflect the complex problem of climate change. A one-state linear

model can provide only a rough approximation of the hugely complex carbon

cycle (Archer and Brovkin 2008). The quadratic utility function is obviously

restrictive. The exclusion of private investment ignores an important chan-

nel for the current generation to benefit its successors. The stationarity of

the model eliminates exogenous technical change that would result, amongst

other things, in changing levels of BAU emissions. By way of compensation,

the model requires only four parameters. Given the amount of uncertainty

about climate change, such a parsimonious model is particularly useful for

the kind of fundamental question that this paper addresses.

7There are more recent, and perhaps more reliable, cost estimates. I use the earlier

estimate partly because it has been fitted to the quadratic function. Significantly, I use

this estimate only to obtain an idea of a reasonable magnitude of Ω. Despite refinements

in cost estimates, I do not think that they have changed by orders of magnitude.
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The historical record suggests that future generations are likely to be

wealthier than the current generation, a possibility excluded by this station-

ary model. Is that restriction a disadvantage? In the standard model

where welfare equals the sum of the expectation of discounted future utility

flows, expected growth can significantly increase the discount rate, rendering

changes to distant utility flows unimportant in today’s welfare calculation.

Recognition that future growth is stochastic has only a second order effect

on this calculation. However, this conclusion follows from the fact that in

the standard model, the curvature of the utility function captures both risk

aversion and the elasticity of intertemporal substitution. Using a model

that disentangles these distinct characteristics of preferences, Traeger (2012)

shows that under reasonable assumptions, stochastic growth might have lit-

tle or no effect on the discount rate. The hypothesis that future generations

are likely to be richer than us, therefore does not necessarily lead to a much

higher discount rate. The widely held view to the contrary is a habit of

thought, born of our often unquestioning adoption of a model that fails to

distinguish (in a risky world) between risk aversion and intertemporal sub-

stitutability.

It is worth comparing the linear-quadratic model to a prominent alterna-

tive. Golosov, Hassler, Krusell, and Tsyvinski (2011) construct an Integrated

Assessment Model that involves both produced capital and the environment.

Their specification of logarithmic utility and Cobb Douglas production yields

the familiar rule that savings is a constant fraction of output. Importantly,

this constant is independent of environmental damages, permitting a de-

coupling of the savings and abatement decisions. They also assume that

damages are log-linear in the environmental variable, resulting in an opti-

mal carbon tax that is a constant fraction of output. Gerlagh and Liski

(2012) adapt this model to include, amongst other things, quasi-hyperbolic

discounting. Restricting their attention to linear equilibria, they again find

that the savings and tax are constant fractions of output.

These functional assumptions (logarithmic utility, Cobb Douglas produc-

tion and log-linear damages) could be imbedded in my model, to obtain

decision rules that depend on , ,  and . This exercise would be worth-

while, because the decoupling of the investment and abatement decisions

would make it possible to include distinct capital stocks for the different

tribes. The examination of non-linear equilibria would also be interesting.

The assumptions leading to a constant tax (possibly as a share of output)

greatly simplifies the analysis. In general, a model with constant marginal
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damages has a constant tax policy. A variation of my linear quadratic model

replaces  ( − 280)2 with  ( − 280), making marginal damages constant
rather than increasing.

Remark 1 For the linear-quadratic model with constant rather than linear

marginal damages, there are two globally defined MPE decision rules; one is

linear in the stock and the other is a constant. There are also non-linear

equilibria.

Define Ω0 = (560−280)
502

,  as the decay rate for the stock and  as the abate-

ment coefficient in the equation of motion, and assume that    and

lifetime is exponentially distributed lifetime. Abatement in the constant

equilibrium equals ∗ ≡ Ω0 (−−)√
2(+−)(−)  0, which is decreasing in both

 and  and linear in Ω0.8 The (absolute value of the) elasticity of ∗ with
respect to  is 1, and the elasticity of  with respect to  is  

(−)(−++) .
For the baseline value of  and  = 002, the elasticity of ∗ with respect
to  ranges between 0 and 03. Thus, for this special case, the equilibrium

decision is much more sensitive to  than to .

The next two sections show that with convex damages, this comparison

also holds in the linear equilibrium but may not hold in non-linear equilibria.

Hereafter, I consider only convex damages.

4.2 The Linear Equilibrium

The linear equilibrium exists for all initial conditions. I report results for

the year 2100 stock, a level often used in policy discussions. I set  = 002 =

 = 1

(a risk-adjusted discount rate of 4%), using  ∈ {0 002 01∞} to

represent a range of altruism,  ∈ {1 5 10} to represent a range of fragmen-
tation amongst tribes, and Ω ∈ {1 3} to represent a range of beliefs about
the cost of climate change relative to the cost of abatement.

The most important two conclusions from this section are (under the

linear equilibrium): (i) The degree of fragmentation () has a much larger

effect on the equilibrium outcome, compared to the degree of altruism ();

and (ii) for moderately high levels of fragmentation, the degree of altruism

is unimportant.

8Under the first three calibration assumptions given above,  = −8 351 × 10−3 and
 = −2 104× 10−2.
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Table 1 shows the equilibrium reduction in year 2100 stock, as a per-

cent of the BAU stock in that year (hereafter, “stock reduction”). The left

panel corresponds to the agent with exponentially distributed lifetime, and

the right panel corresponds to the agent with finite lifetime, both with pater-

nalistic altruism. The rows corresponding to  = 002 =  in the two panels

are identical, because for  =  the two problems are equivalent; both have

the constant discount rate  +  =  + 1

. Comparisons between other rows

illustrate the points made in Section 2.3; the rest of this section discusses

only the left panel, for the agent with exponentially distributed lifetime.

The first element in an entry corresponds to low damages, Ω = 1, and the

second element corresponds to moderate damages, Ω = 3. Keeping the year

2100 stock to 400 500 and 600 ppm requires, respectively, stock reductions of

43%, 29% and 14% of the BAU levels of 700 ppm. For the parameter values

here, the equilibrium year 2100 stock ranges from 470 ppm (with  = 1 and

 = 0) to just under 700 ppm for large values of  and .

I.

\ 1 5 10

0.0 (19 33) (6 12) (3 8)

0.02 (11 25) (2 7) (1 4)

0.1 (8 19) (2 5) (1 2)

∞ (7 17) (2 4) (1 2)

II.

\ 1 5 10

0.0 (24 37) (7 15) (4 10)

0.02 (11 25) (2 7) (1 4)

0.1 (5 14) (1 3) (05 2)

∞ (3 9) (07 2) (03 1)

Table 1: Reduction in the year 2100 stock as a % of BAU level (“stock reduc-

tion”). First element corresponds to Ω = 1 and second corresponds to Ω = 3.

Table 1.I corresponds to the agent with exponentially distributed lifetime and

Table 1.II corresponds to the agent with finite lifetime.

A decrease in altruism (larger ) or contemporaneous cooperation (larger

) of course are associated with higher stocks (lower stock reduction). The

facts that  and  have different units, and that the elasticities that we

care about are not constant, complicate a comparison of the equilibrium

effects of these parameters. However,  = ∞ is an upper bound, and the

equilibria under  = 01 and  = ∞ are similar; thus,  = 01 corresponds

to a very low level of altruism. At  = ∞ the stock reduction equals 0.

Stock reductions for  = 10 are small, suggesting that  = 10 corresponds

to a high degree of fragmentation. I therefore consider the intermediate

values  = 002 and  = 5 to represent “moderate” levels of altruism and

fragmentation. I emphasize the equilibrium effects of changing only one or
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both of the parameters to these levels, from their lower bounds  = 0 and

 = 1.

An increase of  from 1 to 5 causes a much lower stock reduction, relative

to an increase in  from 0 to 002. Changing both parameters from their

lower bound to the moderate levels causes, for Ω = 3, a nearly 80% fall in

equilibrium stock reduction; an increase in only  causes a 24% fall in stock

reduction and an increase in only  causes a 64% fall in stock reduction.

By these measures, a decrease in contemporaneous cooperation has a much

larger effect on the equilibrium than does a decrease in altruism. (The

comment following Remark 1 notes that this comparison also holds when

marginal damages are constant.)

The equilibrium effect of lower altruism is smaller than the literature cited

in the Introduction, which emphasizes the social discount rate, might suggest.

That literature uses an infinitely lived agent, where the discount rate (or the

pure rate of time preference) measures the value that one places on both one’s

own and on descendants’ future consumption (or utility). At least a portion

of the disagreement amongst the authors cited arose from ethical questions

about the appropriate treatment of future generations. The parameters 

and  disentangle selfish from altruistic considerations.

Increasing Ω from 1 to 3, holding  and  fixed, increases the percent

stock reduction in the year 2100 stock by a factor of 2 — 3 in most cases.

An increase in  from 1 to 5 leads to a substantial drop in this stock reduc-

tion, much larger in both percentage and absolute terms than the difference

caused by a change of  from 5 to 10. This type of result, where cooperation

breaks down rapidly even at small levels of fragmentation, is familiar from

industrial organization models. For example, the Cournot equilibrium price

may be close to the competitive price when there are only a few firms. A

larger value of  decreases the effect of changes in altruism. If the level of

contemporaneous cooperation is low, the degree of altruism is rather unim-

portant. For example, at  = 10 equilibrium stock is close to BAU levels for

all values of , so changes in  do not have much effect. In contrast, even

at high values of , a change in  has a large effect on the equilibrium.

For Ω = 3,  = 1 and  = 0, the equilibrium steady state is 496 ppm,

an almost 50% reduction in the BAU steady state. The same steady state

results from a standard optimization problem with a constant discount rate

of 0.9%. As noted above, the stock that maximizes the steady state utility

flow (the “optimal static steady state”) is 402 ppm; the same steady state

results from the social planner’s problem in the limit as the constant discount
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rate approaches 0.

4.3 Nonlinear Equilibria

I consider non-linear equilibria only for the agent with exponentially dis-

tributed lifetime. The most important conclusions from this section (under

non-linear equilibria) are: (i) The importance of the degree of altruism is

comparable to that of the degree of fragmentation; and (ii) the degree of

altruism may be especially important in determining the outcome when the

degree of fragmentation is large. Thus, consideration of non-linear equilib-

ria can reverse the conclusions obtained under the assumption of a linear

equilibrium.9

Define  as the infimum of steady state stocks that can be supported in

a MPE, as a ratio of the optimal static steady stock. Proposition 2 implies

that for  = 1,  → 1 as  → 0. In general,  is a function of  ,

and the other model parameters. The solid graphs in Figure 2 show  for

0 ≤  ≤  = 002 for  = 1 and  = 5, given Ω = 3 and the other parameter

values discussed above. The dashed graphs show, for different values of 

and , the steady state in the linear equilibrium as a ratio of the optimal

static steady state.

For  =  and  = 1 the game is a standard optimal control problem, so

the linear equilibrium is the unique MPE; consequently, for  = 1 the solid

and dashed graphs converge at  = . For    or   1 there are multiple

equilibria, as explained in Section 3.2. In this circumstance, the gap between

the smallest stable MPE steady state and the steady state under the linear

equilibrium (reflected in the distance between a solid and a dashed curve)

increases with both  and  − . The greater is  or  − , the greater is

the coordination problem arising from the multiplicity of equilibria.

The graph of  for  = 5 lies strictly above the graph for  = 1, although

there is only approximately a 1% difference at  = 0. The difference between

the graphs increases with . Thus, for small values of  it is possible to

support, as a MPE steady state, a stock of carbon close to the optimal static

steady state regardless of whether  = 1 or  = 5. However, for larger values

of , the smallest possible steady state in a MPE is much larger for  = 5

compared to  = 1. Thus, if one considers non-linear equilibria, the altruism

9It may be important to bear this possible reversal in mind in evaluating results that

focus on a single (usually linear) equilibrium in models with non-constant discounting.
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Figure 2: Solid curves show , the ratio of the infimum of stable MPE steady

state to the static optimum steady state. Dashed curves show ratio of steady

state in linear equilibrium to the static optimum steady state. Ω = 3.

parameter becomes more important for larger . The previous section notes

that if one considers only the linear equilibria, the altruism parameter is less

important for large .

Non-linear equilibria — unlike the linear equilibrium — may be defined

over only a strict subset of state space. Tsutsui and Mino’s (1990) graphical

analysis of the domain of existence of non-linear equilibria is not possible in

the three-dimensional system () here. Nonlinear equilibria can be ob-

tained by solving the system of differential equations for the control variable

and , as functions of the state variable, as an initial value problem; the

initial value is a steady state (sic).

Figure 3 shows three equilibrium decision rules, together with the set of

steady states (the dashed line) for  = 5, Ω = 3, and  = 000001 and the

other parameters discussed above. For combinations of  strictly below

the dashed line, the stock is increasing over time. The label on each solid

curve shows the steady state induced by that policy function. The positively

sloped line is the linear equilibrium, corresponding to a steady state of 760

ppm. In this equilibrium, the level of abatement increases with the stock.

The non-monotonic policy function drives the state to 745 ppm. In this

equilibrium, abatement starts out high and falls until the stock gets close to

its steady state; in the neighborhood of the steady state, abatement increases.
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Figure 3: Abatement,  (as a percent of BAU emissions) as a function of the

stock,  (ppm), for  = 5 and  = 000001. The three MPE policy functions

drive the state from the initial value 380 ppm to different steady states, shown by

the labels on the curves. The dashed line shows the combinations of abatement

and stock that maintain a steady state.

Even though the two steady states, 760 and 745, are similar, the speed of

increase in much higher in the linear equilibrium. As a consequence of the

scale of the figure, the curve labeled “463 ppm” appears to be coincident

with the dashed line. The actual curve lies below the dashed line except at

the steady state, so this policy rule drives any stock 380 ≤ 0 ≤ 463 to the
steady state 463. In this equilibrium, abatement falls over time, allowing

the stock to grow slowly until it reaches the steady state. The stock 463 is

about 10% larger than the theoretically determined minimum steady state

in a MPE with  = 5, Ω = 3, and  = 000001.

Figure 3 provides two important pieces of information. First, the do-

main of existence of non-linear equilibria that maintain low stock levels may

include the current stock level. Thus, the multiplicity of equilibria is not

a mere curiosity, as would arguably be the case if non-linear equilibria were

defined only in the neighborhood of their steady state. Second, equilibrium

decision rules may be strictly increasing, decreasing, or non-monotonic in

the state variable. Where the equilibrium decision rule is increasing in the

stock, actions can be considered strategic substitutes in the following sense:

a higher level of abatement by an agent today leads to a lower future stock,
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with lower future equilibrium abatement by all agents. Similarly, when the

decision rule is decreasing in the stock, actions can be considered strategic

complements. Thus, actions might be strategic complements, substitutes,

or changing from the former to the latter over time. Decision rules that pro-

duce low stock trajectories imply strategic complementarity, and they require

especially large abatement efforts early in the trajectory, while the stock is

still low.

The possibility that equilibrium abatement (or the equilibrium carbon

tax) falls over time, ignores the likely reality of convex adjustment costs in

emissions levels. It also ignores that abatement costs may fall over time, an

assumption that is important to the “policy ramp” in DICE. These simpli-

fications, and many others, mean that this model is not suitable for detailed

policy advice; as noted above, the model does not have that normative ob-

jective. Nevertheless, it is interesting to note that Golosov et. al’s (2011)

normative model recommends a decreasing carbon tax. That result is due

to the Hotelling aspect of their model, and the related “Green paradox”.

5 Discussion

The provision of a long-lived public good depends on the ability of contempo-

raneous agents to cooperate, and on their degree of altruism towards future

generations. In the climate policy context, the academic economic literature

has emphasized the role of the social discount rate. The popular press and

other disciplines emphasize the difficulty of getting different nations to form

an agreement that internalizes the effect of national emissions. Although

limited altruism and lack of cooperation are both obstacles to effective cli-

mate policy, their relative importance is not obvious. This relation depends

on the specifics of the problem, in particular on parameters that determine

the costs and benefits of abatement and on the dynamics of the climate

system. It also depends on the type of equilibria that one considers.

The manner in which these factors affect the relative importance of the

two obstacles to effective policy has, I believe, not previously been studied.

Embedding an OLG framework in a differential game provides a means of

addressing this issue formally. I use this model to study climate policy.

If one considers only the linear equilibrium in the climate application,

two clear conclusions emerge: (i) the degree of contemporaneous cooperation

has significantly greater effect on equilibrium policy than does the degree of
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intergenerational altruism, and (ii) once the degree of cooperation is even

moderately low, the outcome is insensitive to the degree of altruism. How-

ever, this class of model admits many MPE, even under the restriction that

these induce a differentiable value function. Non-linear equilibria can sup-

port a broad range of outcomes. Some of these outcomes result in high

levels of abatement and low pollution stocks. Taking into consideration

these nonlinear equilibria, the outcome may be more sensitive to the degree

of altruism than to the level of cooperation, and the degree of altruism may

be important especially when the degree of cooperation is low. That is,

broadening the scope of enquiry to include nonlinear equilibria, may reverse

conclusions concerning the relative importance of cooperation and altruism.

It is tempting, but I believe unproductive, to try to assess the relative

plausibility of linear versus non-linear equilibria. The existence of non-linear

equilibria requires an infinite time horizon (or a random finite horizon, with

unbounded support). However, the infinite (or random, unbounded) horizon

is a realistic feature of the problem. Linear equilibria have the virtue of being

defined for the entire real line, whereas non-linear equilibria are defined over

only a subset of the real line. However, the examples in Section 4.3 show that

the domain of non-linear equilibria is large enough to be relevant. Linear

equilibria are easier to compute; but given the degree of abstraction of this

model, I doubt that ease of computability is a convincing basis for choosing

a particular type of equilibrium. A persuasive argument for equilibrium

selection in this setting may be found, but I have not yet seen it.

It is important to recognize that the provision of a long-lived public good

by countries that care about only their own current and future citizens is

generically a coordination problem. The logic of Nash’s noncooperative

equilibrium does not doom us to bad outcomes, even if we dismiss “trigger”

or other punishment strategies as implausible. International negotiations

on climate policy are important, even if they do not result in enforceable

agreements. Negotiations make coordination easier to achieve.
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A Appendix Discounting

I begin with a discrete time model, in which each period lasts for  units

of time (e.g., years), and obtain the discount factors in the continuous time

setting by passing to the limit, as  → 0. This approach is useful for ex-

plaining the meaning of the different models, and particularly for deriving

the discount functions under pure altruism and for a finite lifetime. Ekeland

and Lazrak (2010) provide the continuous time discount factor under expo-

nentially distributed lifetime and paternalistic altruism, without the discrete

time detour; I include that case so that this appendix is self-contained.

A.1 The discrete time model

Table 2 introduces notation used to obtain concise expressions of the discrete

time discount factors. The pure rate of time preference that an agent uses

to evaluate her selfish component of welfare is , and  is the rate she uses to

evaluate the utility or welfare of future generations;  = − and  = − are
the corresponding discount factors. For the case of exponentially distributed

lifetime,  is the mortality = birth = hazard rate, so  =  +  is the

risk-adjusted discount rate and  = − is the corresponding risk-adjusted
discount factor. With a constant population normalized to 1,  = 1− −

is the mass of agents born at the end of a period of length . In order to

make the models with exponentially distributed and deterministic lifetimes

comparable, I assume throughout that the lifetime in the latter case equals

 = 1

, the expected lifetime under the exponential distribution.

mortality
selfish time

preference

risk adjusted

discounting

altruism

weight

continuous

time rates
 = 1


  =  +  

discrete time

factors
 = 1− −  = −  = −  = −

Table 2: Parameters that appear in the discount functions

A.1.1 Exponentially distributed lifetime, paternalistic altruism

Agents use the risk-adjusted discount factor − to evaluate their own future
utility. Agents alive in a period are identical, so any can be chosen as the
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social planner who makes the decision about investment in the public good in

that period. The social planner alive in period 0 gives weight − to the pe-
riod  utility of agents currently alive, and the weight

¡
1− −

¢
−−(−)

to the period  utility of agents born in period  ≤ . There are 1 − −

of these agents, each of whom discounts her period  utility at −(−), and
the current social planner values that utility at − .
The total weight that the current social planner puts on period  utility

flow (the discount factor) is the sum of the selfish and altruistic components

for those currently alive:

(; ) = − +
¡
1− −

¢ X
=1

−−(−) (14)

A.1.2 Exponentially distributed lifetime, pure altruism

The expected present value of the flow of utility of an agent alive in period

 (the selfish component of her welfare) is

∞X
=0

−+

An agent’s total welfare equals the sum of her own selfish utility and the

utility that she receives from the welfare of agents who are born in the future.

Denote the total welfare of the agent born in period  +  as +. In each

period, 1 − − agents are born. The agent currently alive attaches the

weight
¡
1− −

¢
− to the welfare of the generation born  periods in the

future. Thus, the welfare of the agent alive at period  is10

 =

∞X
=0

−+ +
¡
1− −

¢ ∞X
=1

−+ (15)

The following proposition gives the formula for the discount factor(; )

such that welfare  equals the present discounted value of future utility flows

, i.e.:

 =

∞X
=0

(; )+ with (0; ) = 1 (16)

10Replacing the first term on the right side of equation (15) by ̃ ≡
P∞

=0 
+ and

defining () =
¡
1− −

¢
−, results in equation (2) of Saez-Marti and Weibull (2005).
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Proposition 3 Assume −
¡
2− −

¢ − − 6= 0 and   . (i) The

additively separable function  defined in equation (16) equals the solution

to the recursion in equation (15) if and only if the discount factor equals

(; ) =
−

¡
− − −

¢
+ −

¡
−

¡
2− −

¢¢


− (2− −)− −
 (17)

(ii) (a)(; ) is positive, bounded and approaches 0 as →∞(b)
P∞

=0(; )

is bounded, so  is bounded given that  is bounded.

The term −
¡
2 + −

¢
=  (1 + ) appears in a formula used to prove

Proposition 3. The following lemma establishes a bound on this term.

Lemma 2 The necessary and sufficient condition for +  1 for all  ≥ 0
is   .

Proof. Necessity: Using the definitions of  and , +  = −
¡
2− −

¢
.

The first order approximation of this expression, evaluated at  = 0, is

1 + ( − )  +  (). This expression is less than 1 if and only if   .

Sufficiency: Use
(−(2−−))


= −

¡
( + ) − − 2¢. If    then

( + ) − − 2  2
¡
− − 1¢  0 so −

¡
2− −

¢
is decreasing in .

Therefore, it is negative for all  ≥ 0 if and only if it is negative for  = 0.

Proof. Proposition 3. Substituting equation (16) into (15) gives

 =

∞X
=0

+ + 

∞X
=1



Ã ∞X
=0

++

!

Making a change of variables,  =  +  and then reversing the order of

summation and simplifying yields

 =  +

∞X
=1

Ã
 + 

X
=1

−

!
+ (18)

Equating coefficients in equations (16) and (18) implies

 =  + 

X
=1

− (19)
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with initial condition 0 = 1. The manipulations above are valid becauseP∞
=0(; ) is bounded, as established in part (ii) below.

An inductive proof establishes part (i). Setting  = 0, the trial solution in

equation (17) satisfies the initial condition 0 = 1. Suppose that for  ≥ 0,
the trial solution solves the recursion (19) for  ≤ . I need to show that

this hypothesis implies that the trial solution solves the recursion for  + 1.

The hypothesis implies

+1 = +1+

+1X
=1

+1− = +1+

+1X
=1


+1− ( − ) +  (+ )

+1−

−+ + 


Simplifying the last expression gives

+1 =
+1 ( − ) +  (+ )

+1

−+ + 


as was to be shown.

(iia) The facts that   1 and (+ )  1 (from Lemma 2) imply that

 is bounded and approaches 0 as →∞. To show that   0, consider

three cases, where   , where     
+1
, and where   

+1
. In the

first case, the numerator and denominator of  are positive by inspection.

In the second case, the denominator is positive. The numerator is positive

iff

() ≡
µ
+ 



¶


− 


 (20)

The function () is increasing in , (0) = 1, and −


 1 because   
+1
;

therefore, inequality (20) is satisfied. Consequently, the numerator of 

is positive, so  is positive. In the third case, the denominator of  is

negative and the numerator is negative iff

() ≡
µ
+ 



¶


− 


 (21)

Here, (0) = 1 and is decreasing in  and the right side of inequality (21) is

greater than 1, so the inequality is satisfied.

(iib) The fact that  is the sum of two geometrically decreasing terms,

means that it’s infinite sum is bounded. The sum equals 1−
(1−−)(1−) .
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A.1.3 Deterministic lifetime, paternalistic altruism

Here, in contrast to the case of exponentially distributed lifetimes, agents

alive in a period are different: the older ones will die sooner than the younger

ones. Agents therefore have different views about the future benefits of the

public good. The social planner in a period is utilitarian: she maximizes

the sum of the discounted utility of those currently alive, plus the value that

those agents give to the utility of the not-yet born.

Agents live for  ≥ 1 periods.11 For  = 2, this model produces Laibson’s
(1997)   model of quasi-hyperbolic discounting. Next period, the fraction¡
1− 1



¢
of current agents will still be alive. The agents alive at  = 0 discount

their future utility using the selfish discount factor −. The utilitarian

social planner representing the agents alive at  = 0 discounts their  = 1

utility at −
¡
1− 1



¢
, which takes into account both the agents’ impatience

and the death of some of the agents alive at  = 0. For  ≤  − 1 the
discount factor that this social planner uses to evaluate the future utility of

agents currently alive is −
¡
1− 



¢
and for  ≥  the discount factor is 0,

because all of the original agents will have died.

With a constant population, 1

new agents are born in each period. The

agents alive in period 0 discount future generations’ utility at −; for ex-
ample, the weight that the agents alive in period 0 give to those born in year

1 is −

, a factor that accounts for both the current agents’ altruism and

the fact that 1

new agents arrive in each period. The agents who arrive in

year 1 discount their own next period utility at −, and because the agents
alive in period 0 discount those agents’ utility at −, the weight that the
period 0 agents place on the  = 2 utility of the agents who arrived at  = 1

is −−


. Those alive at time 0 place the weight −−(−)


on the period

  0 utility of agents who arrive in period , for −    ≤ .

The weight that the  = 0 social planner places on the utility flow at

period  ≥ 0,  (; ), equals the sum of the weights that the agents whom

she represents place on the selfish and the altruistic components of their

preferences. As noted above, the selfish component of this discount factor

has a different structure for    and for  ≥  . Therefore, the function

 (; ) also has a different structure for    and for  ≥  .

In the discrete time setting, the weight that the social planner places on

11Sumaila and Walters (2005) propose a similar model, but their formulae account for

birth but not for death. With constant population, the discount factor must account for

both death and birth.
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utility flow at a future time equals the sum of the weight attributed to agents

currently alive and to those have not yet been born. This sum has a different

structure, depending on whether  ≤  −1 or  ≥  . For  6=  the discount

factor is

(; ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
¡
1− 



¢
+ 1



P

=1 
−−(−) =

1


µ
−(−−−)
(−−−)

+ ( − ) −
¶
for  ≤  − 1

1


P

=−+1 
−−(−) =

1

−(+1− ) 

−−−
−−− for  ≥ 

(22)

For  = 2, the discount factor at  = 1 is −+−
2

and the discount factor at

  1 is 1
2
−(−1)

¡
− + −

¢
. Defining  = −+−

2
,  = − produces

the   model.

A.2 The continuous time limit

In the discrete time setting I do not need to distinguish between the number

of units of time (e.g. years) and the number of periods. This distinction is

important in using the discrete time model to obtain (by passing to a limit)

the continuous time discount factors. That is,  and  refer to period indices

in the discussion of discrete time models, and they refer to units of calendar

time in the discussion of continuous time models; similarly,  refers to the

number of periods that the agent lives in the discrete time setting, and the

number of units of time that she lives in the continuous time setting. For

fixed , this notation does not present an issue, but here I want to consider

the limiting case as → 0. For this purpose, it is important to maintain the

distinctions between the period index and units of time.

For this appendix (only) I use  and Γ to refer exclusively to units of time

and  and  to refer exclusively to number of periods. If a period lasts 

units of time,  =  and Γ = . Using these definitions, I set  = 

and

 = Γ

and use the definitions in the last row of Table 2 to write the discrete

time discount factors as a function of units of time (rather than number of

periods) and the length of each period, . It is then a simple matter to take

limits as → 0.
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A.2.1 Exponentially distributed lifetime, paternalistic altruism

Equation (14) can be simplified to

(; ) =

¡¡
− − −

¢
− +

¡
1− −

¢
−

¡
− − −

¢¢
(− − −)



This simplification assumes that  6= ; the case  =  follows fromL’Hospital’s

Rule.

Define  () = 
− =

(1−−)−
−(+)−− and use L’Hospital’s Rule to obtain

lim→0  () = 
−− =


− . Using this definition of  and the last row of

Table 2, equation (14), the discount function expressed as a function of time,

rather than number of periods, is

(1 +  ()) −(+) −  () − 

Letting  → 0 gives the continuous time discount factor for calendar time

 , equation (1). Ekeland and Lazrak (2010) obtain this formula directly

(without the discrete time detour).

A.2.2 Exponentially distributed lifetime, pure altruism

This section provides the proof of Proposition 1.

Proof. Proposition 1 In order to establish the claim, denote the discount

rate that the agent with pure altruism applies to future generations as 0

(instead of , the rate under paternalistic altruism). Define the function

 () =
−+  (+ 1)


=
−− + −

0
¡
2−−¢



and use lim→0  () =  + 2 − 0. Also define  () =
ln(2−)


and use

lim→0  () = . Finally, note that

(+ 1)

=
¡
2−−¢  = expÃ ln ¡2−−¢



!
= ()

so lim→0
¡
2−−¢  = . With these definitions and the last row of Table

2, the discrete time discount factor in equation (17) can be written

−
³
−

0−−


´
+ −

0 (1−−)


−
0()



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Using the limiting expressions given above, the limit of this function as → 0

gives the continuous time discount factor for the agent with pure altruism:

() =
− ( − 0) + −(

0−)

 +  − 0
 (23)

The right side of equations (1) and (23) are equivalent if and only if 0 = +.

A.2.3 Finite lifetime, paternalistic altruism

Define  () = −

=
(−−−)


and use lim→0  () =  − . With this

definition of  and the last row of Table 2, the discrete time discount factor

for   Γ can be written


Γ(−)

³

¡
 − 

¢
+ (Γ− ) 

(−)


´
=

−(−−−)
Γ

+
(Γ−)
Γ

− 

Taking the limit as → 0 and rearranging the resulting expression produces

the first line of equation (2).

For  ≥ Γ the discount factor is



Γ ( − )
(Γ−−)

¡
−Γ − −Γ

¢


Taking the limit as → 0 produces the second line of equation (2).

B Appendix: Proofs and Remarks

This appendix collects a number of calculations and remarks.

B.1 Equilibrium conditions for other cases

There are two cases under exponentially distributed lifetime and a single case

with a deterministic lifetime, because in the former but not in the latter,

lim→∞  () depends on whether    or   . For the exponential case

with 0   ≤ , and using the differentiability of () (already assumed in
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deriving the problem comprised of (12) and ), a necessary condition for the

MPE is that

 =  () ≡ argmax (( )−() +  () ( ))  (24)

and that () satisfy the dynamic programming equation12

() = ((  ())−() +  () (  ()))  (25)

For the exponential case with   , where lim→∞  () = , the fictitious

control problem is

() = max

Z ∞

0

− (( )−())  subject to ̇ =  ( ) (26)

with the side condition (definition):

() ≡
Z ∞

0

() (()− )(∗   (
∗
 )) (27)

Equation (1) and the first line of equation (3) imply  () ( ()− ) =

−− so equation (27) simplifies to

() = −
Z ∞

0

−
¡
∗+  

¡
∗+

¢¢
 (28)

The integral in equation (28) is the present discounted value of the equi-

librium future flow of payoff, computed using the discount rate . Thus,

−() is an annuity, which if received in perpetuity and discounted at 
(the constant birth = death rate), equals the value of this future stream of

payoff. The flow payoff in the fictitious control problem equals the flow

playoff in the original model, plus this annuity. A necessary condition for

the MPE is that

 =  () ≡ argmax (( )−() +  () ( ))  (29)

and that () satisfy the dynamic programming equation

() = ((  ())−() +  () (  ()))  (30)

12Appendix B.2 explains why these necessary conditions, together with the definition in

equation (13), are also sufficient for a MPE.

9



For agents with deterministic lifetime  , the function  has a slightly

different form than above. Using equation (4) of Karp (2007) and equations

(7) and (2), − equals13

−() ≡ (− )

Z 

0

( − )


−

¡
∗+  

¡
∗+

¢¢
 (31)

The integral on the right side of definition (31) is the present value, dis-

counted at the selfish rate , of the payoff that those alive at  receive from

the flow 
¡
∗+  

¡
∗+

¢¢
over [  + ]. Over that interval, the number

of agents remaining from the time  population decreases linearly. Again,

we can interpret − as an annuity, which if received in perpetuity and dis-

counted at the rate (− ), equals the present value to those currently alive

of the program 
¡
∗+  

¡
∗+

¢¢
.

The dynamic programming equation in this case is

() = max

(( )−() +  () ( )) (32)

with the annuity  given by equation (31).

B.2 Sufficiency

The discussion of sufficiency in Karp (2007) is misleading, and I take this op-

portunity to clarify it. The endogeneity of the function(), and the result-

ing difficulty in determining its curvature, renders inapplicable the standard

sufficiency conditions for the fictitious control problem, defined by equations

(26) and (27). However, the sufficiency regarding the fictitious control prob-

lem is a red herring, because that problem is merely a device for describing

the equilibrium to the sequential game induced by non-constant discounting;

for that purpose, we use only the necessary conditions to the fictitious prob-

lem. The maximization problem in equation (21) of Karp (2007) is merely a

statement of the problem for the planner in a particular period in a discrete

time setting, under the assumption of Markov perfection. Equation (5) of

that paper (equivalently, equation (30) above) is merely the limiting form of

the discrete time condition, as the length of a period of commitment goes to

13Karp (2007) sets up the problem using a discount rate () for  ≤  and () = ̄ for

 ≥  . The results for the case of exponentially distributed lifetime use the limiting case

as  →∞. In the OLG model with finitely lived agents,  is finite and ̄ = 
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0. Therefore, provided that we are willing to restrict attention to the limit-

ing game (as the length of a period goes to zero in the discrete time game),

and provided that the value function is differentiable, a sufficient condition

for the MPE is that the control rule satisfy equation (29) above, and that

the value function satisfy the DPE (30).

The primitive functions of some interesting optimal control problems do

not have the curvature need to satisfy familiar sufficient conditions. Suffi-

ciency in optimal control problems is therefore sometimes a difficult issue,

and the analysis sometimes proceeds without reference to sufficiency. The

difficulty arises because sufficiency is a global property in optimal control

problems. In contrast, sufficiency is a much simpler issue in the type of

sequential game induced by non-constant discounting and the requirement

of Markov perfection. In this game, each of the succession of social planers

chooses a single action; given her beliefs about successors’ policy function,

each policy maker thus solves a static optimization problem. Because each of

the policymakers treats the functions () and () as predetermined (al-

though they are endogenous to the game), sufficiency requires (in the limit

as → 0) only that  =  () maximize (( ) +  () ( )).

B.3 Proof of Lemma 1

For small   0 define the  as the smallest time beyond which
¯̄̄
()−∞

∞

¯̄̄
≤ .

That is

 = inf


½
 :

¯̄̄̄
 ()− ∞

∞

¯̄̄̄
≤ ∀ ≥ 

¾


Note that  ∞. Use

lim→0
³∞

0
()()
∞


´
= lim→0

[(
 
0
()())+(∞

∞


())+(
∞


()()−∞
∞


())]
∞



(33)

Consider each of the three terms on the right side of this equation. The fact

that  ∞ implies that

lim
→0



Z 

0

()() = 0

11



A calculation confirms thatZ ∞



µµ
− 

− 

¶
− − 

− 
−

¶
 =

−−2 + − + −
(−+ ) 



Taking the limit as  → 0 of this expression, implies that the second term

on the second line of equation (33) equals 

. By definition of  ,¯̄̄̄ R∞


()()− ∞

R∞


()

∞

¯̄̄̄
 

Z ∞



()

The limit as → 0 of the last expression is  

.

B.4 Proof of Proposition 2

I first derive the necessary and sufficient condition, for general , that must be

satisfied at a stable steady state in a differentiable MPE. I then specialize

to  = 1 and show that the boundary of the open interval of states that

satisfies this condition is arbitrarily close to the optimal static steady state

for  close to 0. Because I am interested in the case where  is small, I

assume throughout that   .

Denote agent ’s policy function as  () and the aggregate decision as

Ψ ≡ , so Ψ0 = 0. Define

 = ( + ΨΨ
0)|∞ 

where the subscript ∞ denotes that the function is evaluated at a steady

state. Stability requires   0. For  ≈ ∞, a first order approximation
gives

+ =  + ∞ (1− ) +  ( − ∞) =⇒ +


≈  (34)

for  ≥ 0. Equation (13) implies

 0 () =

( − )
R∞
0

− ((+   (+)) + (+   (+))
0 (+ ))

+




(35)

12



Using equation (34) and evaluating equation (35) at  = ∞ gives

 0 (∞) = ( − ) ( + 
0)|∞

R∞
0

−

=
(−)(+0)|∞

− =
(−)


+

Ψ0



|∞

− 

(36)

The Hamiltonian corresponding to the fictitious optimal control problem

in equation (12) is

 =  ( )− () + 

µ
 +

− 1


Ψ ()

¶


where  is the current value costate variable. The necessary conditions for

optimality are

+ = 0 =⇒  = −


and ̇ = −
µ
 − 0 + 

µ
 +

− 1


Ψ
0
¶¶



Using the first necessary condition and evaluating the costate equation

at a steady state (setting ̇ = 0) gives the conditionh
− + 0 + 



¡
 +

−1

Ψ

0 − 
¢i
|∞
=∙

− +
(−)


+

Ψ0



− + 



¡
 +

−1

Ψ

0 − 
¢¸
|∞
= 0

(37)

where the first equality uses equation (36). Using the definition of  and

rearranging the second line of equation (37) implies that Ψ0 = Ψ0 (∞) is a
solution to the quadratic equation

× (Ψ0)2 + ×Ψ0 +  = 0 (38)

with

 ≡ 
−1



 ≡
³
( − ) 1


+ −1


( − )−

³
( − )− 




´´


 ≡ (−−  + ) +


( − ) ( − )

Hereafter I set  = 1, so

Ψ0b∞ =
(+  − )



− 1


( − ) ( − )

 −  +




=⇒
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 =  + 
(+−) −

1

(−)(−)

−+



=





− 



+




− 

+







+



− 







(39)

The optimal static steady state is a solution toµ



− 



¶
 = 0

I define the state and the control variables so that   0 and   0. For

example, in the climate model,  is the stock of atmospheric carbon and  is

the level of abatement, so the flow of utility is decreasing in both variables.

These definitions (the state variable is a “bad” and the action is costly)

mean that the model is sensible if and only if   0 (so that incurring a

cost reduces the public bad). Given the concavity of the static optimization

problem (which determines the optimal static steady state), a stock level

slightly greater than the optimal static steady state satisfiesµ



− 



¶
 =   0 or

µ



− 



¶
=




 0 (40)

for  small in absolute value. Such a stock level yields approximately the

maximum steady state level of utility. (Given that the costly action  reduces

the stock, it would never be part of an equilibrium to drive the stock below

the optimal static level.)

Using equation (40) in (39) gives

 =
 

 + 

³


+ 



´


 + 





The denominator is positive for small . For  small in absolute value (so

that 

 +   0), the numerator is negative if and only if

− 

³



 + 

´  

i.e. if and only if  is sufficiently small, as was to be shown.
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C The linear-quadratic model with  tribes

This appendix is not intended for publication. In the interest of generality, I

provide the formulae for the model that includes an interaction between the

control and state variables in the utility function. The climate model does

not require this interaction. I first make a linear transformation of the state

and control variables in order to reduce the dimension of parameter space

in the linear-quadratic one-tribe model. I then convert the  = 1 model

to the multi-tribe setting. The next subsections provide formulae for the

linear equilibria for general , under both exponentially distributed lifetimes

and deterministic lifetimes. I also explain how to obtain nonlinear equilibria

for the model with exponentially distributed lifetime. I then discuss the

calibration.

The text notes that a specialization of the linear-quadratic problem has

the flow payoff quadratic in the control and linear in the state. It is easy to

see why there are two globally defined MPE decision rules for this variation,

a constant and a linear decision rule. The constant equilibrium decision can

be obtained in closed form; to obtain the linear equilibrium it is necessary to

solve a quadratic rather than a cubic equation. Nonlinear equilibria must be

solved numerically. If agent  believes that other agents set their decision

to a constant level, agent  faces a problem that is linear in the state; the

equilibrium decision to that problem is a constant. If agent  believes that

other agents use a linear control rule, the function  is quadratic in the

state; agent  therefore has a fictitious control problem that is quadratic in

the state; the solution to that problem is a linear control rule.

C.1 Reduction in parameter space

Here I make a linear transformation of the state and control variables that

reduces the dimension of parameter space from 8 to 4. Begin with a one-tribe

model in which the state variable is  and the control variable is . Given the

8 parameters    , the flow payoff in the one-tribe setting is

− ¡+2 +  +  2 +
¢

(41)

and the equation of motion is

̇ = +  +  (42)
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Define a new state and control variable:

 =
√
2
¡
2−
4−2 + 

¢
 =

√
2

¡
2−
4−2 + 

¢ (43)

With these definitions, the flow payoff and the equation of motion are, re-

spectively,

−1
2

¡
2 + 2 +

¢
+ constant, and ̇ =  +  +  (44)

with  ≡ √


and

 ≡
√
2

µ
−

2 −

4 −2
+ 

 − 2
4 −2

¶
and  ≡ 

√
√


 (45)

The constant in the flow payoff does not affect behavior, so I ignore it hence-

forth.

C.2 From one tribe to  tribes

I want to define a flow payoff and an equation of motion (the technology)

such that the aggregate feasible payoff does not depend directly on . The

equilibrium aggregate payoff and decision rule depends on  only insofar as

 alters the equilibrium decision rules of the individual tribes. That is, 

has a strategic but not an intrinsic effect on agents’ payoffs.

Define the flow payoff and the constraint facing the ’th tribe as

−1
2

µ
1


2 + 2 +

¶
̇ =  +  + 

Ã
 +

X
 6=



!
 (46)

where  is the control variable of the ’th tribe at an arbitrary point in time.

If all tribes use the same decision, , the aggregate action is =
P

  = .

The aggregate payoff when all tribes use the same action is  times the first

expression in system (46), which equals the first expression in system (44).

When all tribes use the same action, the equations of motion in the two

systems are obviously identical. The equilibrium flow payoff (where  = 

)

simplifies to − 1
2
(2 +2 +)
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C.3 Calculating the equilibria

This section provides details for the linear and non-linear equilibria in the

model where agents have exponentially distributed lifetime, and for the linear

equilibrium where agents have known finite lifetime.

C.3.1 Exponentially distributed lifetime

For the purpose of obtaining the linear equilibrium under exponentially dis-

tributed lifetimes for the two cases,    and   , and for the limiting

case  =∞, I introduce constants    that take the values given in Table
3

 =  =  =

if      

if     −  

if  =∞ n/a  = 0 

Table 3: values of    for different cases

Here,  is the discount rate used in the definition of ,  is the factor that

multiplies the integral in the definition of −, and  is the discount rate

used in the fictitious control problem.

The Hamiltonian, , for the fictitious optimal control problem, the nec-

essary conditions for that problem, and the definition of , are

 = −1
2

¡
1

2 + 2

¢− () + 
¡
 +  + 

¡
+ −1


Ψ ()

¢¢


= −+  = 0 =⇒  = 


= 



̇ = − 

= − ¡−


− 0 + 

¡
+ −1


Ψ0
¢¢

 = − R∞
0

−
¡− 1

2

¢
(2 +2) 

(47)

In a symmetric equilibrium,  = Ψ ≡ .

Differentiating the second equation in system (47) with respect to time

and using the third equation gives

̇


= 




−
µ
−

− 0 +





µ
+

− 1


 0
¶¶


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Dividing this equation by ̇, using ̇

̇
= 


=  0, gives

̇

̇
= 0


=



−(−


−0+

 (+
−1


0))
++

=⇒
 0 = ((−)++0)

(+)−(1−2) 
(48)

The fourth equation in system (47) implies

 = 
2
(2 +2) + 0 ( +  + ) =⇒

 0 =
− 

2(
2+2)

(++)

(49)

A MPE must solve the ODEs in the second lines of equations (48) and (49).

Finding the linear equilibrium In the linear equilibrium,  is a linear

and  is a quadratic function of :

 = +∆

 = 0 + 1 +
1
2
2

2

The objective is to find the equilibrium values of , ∆. Substituting these two

functions in the ODEs in equations (48) and (49) and equating coefficients

in  and 1 for the first equation, and coefficients of 2 and  in the second

equation, implies

(− 2)∆2 +  ( − 2)∆+ + 2 = 0

(2−  + 2∆)2 + (∆
2 + ) = 0

(∆+  − − 2∆) + 1 − ∆ = 0

(2− 2 + 2∆)1 + (22 + 2∆+ 22) = 0

(50)

Solving the second equation for 2 and substituting the result into the first

equation implies

2 = − ∆2+
2−+2∆

Σ ≡ 22 (2− 1)∆3 + (((8− 2 − 2)+ (+  − 2)) )∆2

+(( − 2 − 2 + 42)− 22)∆+  (+  − 2) = 0
The correct root of the cubic Σ = 0 must yield a stable equilibrium, i.e. the

inequality  + ∆  0 must hold. Use this root (or roots) to obtain the

equilibrium value(s) of 2. Using these values, the last two equations in the

system (50) are a pair of linear equations in  1.
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Finding nonlinear equilibria I begin by using the argument presented

in Appendix B.4, generalized to allow arbitrary values of , but specialized

to the linear-quadratic setting. Denote Φ as the value of  0 at a steady
state, i.e. where 0 =  +  + . With this definition,  =  + Φ. A

derivation that parallels that which establishes equation (36) gives

 0 (∞) = 

( +Φ)|∞

R∞
0

− =


(+Φ)|∞

− =

(− 1


(+)Φ)

−−Φ 
(51)

Substitute this steady state value of 0 into the steady state value of 0, using
equation (48), and evaluate the result at a steady state ( = −1


( + ))

to obtain the quadratic in Φ :

Φ2 + Φ+  = 0 with

 = (1− )  ( + )

 = (−  − +  + 2 − 3) ( + ) +  (− ) +  (2−  − 2)

 =  (+  − ) + 

( + ) ( −  +  − 2) 

(52)

The set of  that can be supported as steady states in a MPE is

Λ =
©

¯̄
∃Φ for which + Φ  0 ∧Φ2 + Φ+  = 0

ª


To construct a non-linear MPE for this model, pick a value of  ∈ Λ

with  = −1

( + ) and solve the pair of ODEs in equations (48) and

(49) with these initial conditions. In general, these ODEs must be solved

numerically. A possible difficulty arises from the fact that we do not know

the domain of such a solution. For example, if we were to solve these ODEs

using a function approximation over a domain that is strictly larger than

the domain of existence of the ODEs, then the solver might return a poor

approximation of the true solution.

MuPad can solve the initial value problem described above; MuPAD’s

default method is DOPRI78, an embedded Runge-Kutta pair of orders 7 and

8. This procedure runs into difficulty because the expression for 0 (and also
for  0 in the case where  = 1) is an indeterminate form at a steady state.

In order to avoid this difficulty, choose a small  and replace the initial condi-

tion (∞∞∞) with a nearby point (∞ + ∞ + Φ∞ + 0 (∞) ).
This point lies close to the correct boundary, and it lies on the tangent to
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the trajectory that takes the system to this boundary. The solution to this

initial value problem,  (), can be plotted, to confirm that it does not cross

the line  ( + )− (1− 2), where  0 is undefined. (As a consistency
check, I confirmed that this approach returns the linear equilibrium when

given an initial condition near the steady state to the linear equilibrium.)

The results reported in the text use this method of numerically obtaining

non-linear equilibria.

In order to calculate the function  graphed in Figure 2 I set + Φ =  ,

where  is a non-positive number close to 0. For   0, the value of Φ that

solves this equation is associated with a stable steady state;  = 0 gives the

infimum of values of Φ associated with a stable steady state. Substituting

Φ = −

into Φ2 + Φ +  = 0 results in an equation that is linear in .

The value of  that solves this equation equals the infimum of  that can

be supported as a steady state in a stable MPE. Replacing  with − 

2+2

expresses the infimum of stable steady states as a multiple  of the optimal

static steady state, − 

2+2
. The resulting equation is linear in  and depends

on all other parameter values. Setting those values equal to the levels given

in Section C.4 results in a  as a function of   and Ω, shown in Figure 2.

C.3.2 Deterministic lifetime

The simplicity of the model with exponentially distributed lifetime results

from the fact that for that case it is trivial to obtain the ODE for the function

 (). It is not clear how one would obtain the ODE for  in the case

where agents have known finite lifetime. I therefore use a slightly different

argument to obtain the linear equilibrium in this case, and I leave the non-

linear case for future work.

The linear equilibrium  =  +∆ must solve the ODE in the second

line of equation (48), a fact that leads to the first and the third line of system

(50). Under the linear policy  = +∆, and given a stock  (0) = ,

 () =
− ( + )

+ ∆

¡
1− (+∆)

¢
+ (+∆) (53)

Substituting this formula into the flow payoff  = − 1
2

¡
2 + (+∆)

2
¢
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and collecting terms,

 = 2
2 + 1+ 0 with

2 = − 1
2

¡
2((+∆)) +∆22((+∆))

¢
11 = − 1

2

¡−2 
+∆

¡
1− (+∆)

¢
(+∆) + 2

¡
1−  ∆

+∆

¡
1− (+∆)

¢¢
∆(+∆)

¢
12 = − 1

2

¡−2 

+∆

¡
1− (+∆)

¢
(+∆) − 2∆2 

+∆

¡
1− (+∆)

¢
(+∆)

¢
1 = 11 + 12

0 = − 1
2

³
(−−)2
(+∆)2

¡
1− (+∆)

¢2
+
¡
+∆−−

+∆

¡
1− (+∆)

¢¢2´
(54)

Under the linear policy,  () is a quadratic function: () = 2
2+1+

0. This fact and the definition of  imply

2
2 + 1+ 0 = ( − )

Z 

0

( − )



¡
−2

2 + 1+ 0
¢


Equating coefficients gives

2 = ( − )
R 
0

(−)


−2

1 = ( − )
R 
0

(−)


−1
(55)

The first line of system (50), together with the definitions of 2 and 2 is a

non-linear equation in ∆. A solution that satisfies  + ∆  0 is a stable

root. Given a numerical value for ∆, the third line of system (50), together

with the definitions of 1 and 1imply

 = − 14 − ∆

13 + ∆+ − − 2∆ 

C.4 Calibration of the climate model

I first express the model in “natural units” and then rewrite the model so

that the control and state variables are percentages that have a convenient

interpretation. I then use the transformation in Appendix C.1 to reduce the

dimension of parameter space.

Let  be the stock variable at time , ppm of carbon and  be the flow,

measured in ppm per year. (One ppm by volume equals 2.13 GtC.) The

equation of motion for the stock of greenhouse gases is

̇ = ̄ +  +  (56)
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The parameters ̄, , and 1 on the right side correspond to  in equation

(42);  corresponds to  and  corresponds to . To calibrate the model,

I set the half life of carbon to 83 years, the steady state in the absence of

anthropogenic emissions equal to the pre-industrial level to 280 ppm, and

assume that under BAU the stock increases from the current level, 380, to

700 in 90 years. These assumptions imply

 = −8 351 170 9× 10−3, ̄ = 2 338 327 8, bau = 5 892 686 0 (57)

With these parameters, the steady state stock under BAU is 986 ppm, and

after 200 years of BAU the stock reaches 872 ppm.

For ease of interpretation, it is convenient to express the control variable,

, as abatement as a percent of BAU emissions, and the stock, , as the

percent increase over preindustrial levels:

 =
bau − 

bau
100 and  =

 − 280
280

100

With these definitions and the parameter values in equation (57), the equa-

tion of motion is

̇ = − 1

280
BAU+

µ
5

14
BAU + 100 +

5

14
̄

¶
= + + (58)

with

 = 2 104 530 7  =  = −8 351 170 9× 10−3  = −2 104 530 7× 10−2
(59)

In this stationary setting, denote the constant  as gross world product

(GWP) exclusive of climate related damage and abatement costs. In this

linear-quadratic model, the flow cost of abatement, as a percent of GWP,

and the flow cost of the stock, as a percent of GWP are, respectively,



2

2


100 and



2

2


100.

For calibration, suppose that the flow cost of a 50% reduction in emissions

relative to BAU ( = 50), is percent of GWP; and the flow cost of doubling

of ppm relative to pre-industrial level ( = 100), is  percent of GWP. These

assumption imply

 =
1

125 000
,  =

1

500 000
 =⇒ 


=



4

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Define Ω = 

, so that the total flow costs, as a percent of GWP, correspond-

ing to actual abatement  and actual stock  equalµ
100

2

¶µ
()

2
+

Ω

4
()

2

¶


Hereafter I drop the positive factor 100
2
to write flow benefits (negative costs)

as

−
µ
2 +

Ω

4
2
¶


Table 4 shows the correspondence between the variables and parameters

in the general model in Section C.1 and in the climate model here.

control state

general          

climate   0 1 0 Ω
4

0   

Table 4: Correspondence between parameter values in general model from

Section C.1 and the climate model in this section

Equation (59) gives the numerical values of    that appear in the

last row of Table 4, for this calibration. Use Table 4, the numerical values

in equation (59) and the formulae in equation (45), to obtain the values of

the model parameters that are used in finding the equilibria in the climate

model:

 = 1 488 127 9
√
Ω and  = −1 052 265 4× 10−2

√
Ω (60)

In interpreting the equilibrium results, it is important to keep in mind that

the model is solved in terms of the transformed state and control  and

. The percent increase in the stock relative to preindustrial level, , and

aggregate abatement as a percent of BAU emissions, , are related to 

using system (43) and the correspondences in Table 4:

 =

r
2

Ω
, and  =

√
2


The initial condition for the problem is  = 380−280
280

100 = 35 714 286 or

 = 35 714 286
q

Ω
2
. The text describes the results in terms of the stock of

atmospheric carbon expressed in ppm.
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