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Abstract 
 
Climate is a persistent asset, bar none: changes in climate-related stocks have consequences 
spanning over centuries or possibly millennia to the future. To reconcile the discounting of 
such far-distant impacts and realism of the shorter-term decisions, we consider hyperbolic 
time-preferences in a climate-economy model. Time-changing utility discount rates have 
unexplored general-equilibrium effects: carbon prices exceed the pure carbon externality costs 
- the Pigouvian tax level - by multiple factors in our quantitative assessment. The climate-
economy model is rich in details but can be solved in closed-form yielding Markov carbon 
prices dependent on climate system parameters, damage estimates, technology parameters, 
and both short- and long-term time preferences. The equilibrium time discount rate is 
endogenous, and it can justify high carbon taxes as advocated by Stern while maintaining the 
realism of the macroeconomic outcome, thus providing a solution for the dilemma centering 
the carbon tax-discount rate debate. The welfare ranking of the policy alternatives is 
unambiguous: enforcing the Pigouvian tax decreases a consistently-defined welfare measure 
vis-a-vis the Markov equilibrium. 
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1 Introduction

“Climate”is an extremely persistent asset, with a complicated and long delay structure of

impacts involving atmospheric and ocean carbon dioxide diffusion, and land surface and

ocean temperature adjustments (e.g., Maier-Reimer and Hasselmann 1987, Hooss et al.

2001). The consequences of current changes in climate-related stocks span over centuries

or possibly millennia into the future. The persistence of climate change is a central

feature in applied climate-economy models, the so called integrated assessment models

(IAMs) put forward by Peck and Teisberg (1992), Nordhaus (1993), and Manne and

Richels (1995). However, policy evaluations of the climate-economy models ignore the

persistent far-distant socioeconomic climate impacts, when holding a view on discounting

that respects revealed preferences on shorter-term decisions such as the savings behavior

(see, e.g., Nordhaus 2007, Weitzman 2007, Dasgupta 2008).

We take it as given that normative climate policy analysis should respect shorter-

term choices consistent with historical data (Nordhaus 2007) but also the evidence that

the far-distant future should be treated differently. Weitzman (2001) surveyed 2,160

economists for their “best estimate of the appropriate real discount rate to be used for

evaluating environmental projects over a long time horizon”, and used the data to argue

that the policy maker should use a discount rate that declines over time (coming close to

zero after 300 years). Rather than relying on experts, some studies invoke “similarity”as

evidence for non-constant discounting: from the current perspective, generations living

after 400 or, alternatively, after 450 years look the same. That being the case, no addi-

tional discounting arises from the added 50 years, while the same time delay commands

large discounting in the near term. Rubinstein (2003) argued that such similarity of

alternatives can justify hyperbolic preferences (see also Karp 2005).

This paper reconciles the distinct short- and long-term views on time discounting

in an integrated climate-economy model – while much has been said to motivate such

preferences, their general equilibrium implications seem to have gone unnoticed.1 Our

approach is normative, without dictatorial objects, respecting the order in which deci-

sion makers appear in the time line. In this setting, the distinct short- and long-run

1The Stern review (2006) triggered a heated debate on how the policies of the climate-economy models

could be made more sensitive to the long-term climate outcomes – essentially, the literature has sought

for reasons to use lower long-term discount rates. In general, non-constant discount rates can result,

e.g., from: aggregation over heterogenous individuals (Gollier and Zeckhauser, 2005; Lengwiler, 2005,

Jackson and Yariv, 2011); uncertainty (Weitzman, 2000, Gollier, 2002). We discuss the motivations

directly consistent with our structure in detail below.
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discounting leads to a climate policy game between generations even when current and

future policy makers internalize all climate impacts of emissions. The equilibrium time

discount factor is endogenous, as opposed to one that is assumed a priori, and this en-

dogeneity of time preference allows partial de-linking of the equilibrium discount factor

used for savings from the one used for the carbon price determination. We find that the

equilibrium carbon prices exceed the Pigouvian tax level – unambiguously defined as

the net present value of the future externality costs from current emissions – potentially

by multiple factors. Apart from the time structure of preferences, the framework for

quantitative analysis producing these results is a standard general-equilibrium growth

framework with a climate module, following the Nordhaus’tradition and its recent gear-

ing towards the macro traditions by Golosov, Hassler, Krusell, and Tsyvinsky (2011).

Our point of departure is a Markov equilibrium where each generation sets its self-

interested savings and climate targets understanding how the future generations respond

to current choices. The model is analytically tractable having thus the same virtues as

the approach in Golosov et al. 2011; however, in addition to changing time preferences,

we include an explicit delay-structure of the carbon-climate cycle, leading to markedly

different carbon prices. We derive the Markov equilibrium savings and carbon prices

dependent on the multi-layer climate system parameters, damage estimates, production

technology parameters, and both short and long-term time-preferences. The interaction

between the climate delays and the time-inconsistent preference structure has substantial

implications for carbon pricing.

Persistent climate allows partial commitment to long-run time preferences through

climate policies, and is therefore valued above that implied by the pure Pigouvian exter-

nality costs. This mechanism is similar to that delivering value for commitment devices

in self-control problems (Laibson, 2007), although self-control at the individual level is

not the interpretation of the “behavioral bias" in our economy, as we explain shortly.

In the Markov equilibrium, the commitment value is larger the longer are the climate

delays, and it can justify high carbon prices as suggested by the Stern Review (2006)

while maintaining the realism of the macroeconomic performance. Table 1 contains the

gist of the quantitative assessment, detailed at the end of the paper. The technology

parameters of the model are calibrated to 25 per cent gross savings, when preferences

are consistent and the annual time discount rate is 2 per cent. This is consistent with

the Nordhaus’DICE 2007 baseline scenario (Nordaus, 2007), giving 8.4 Euros per ton of

CO2 as the optimal carbon price in year 2010 (i.e., 40 Dollars per ton C). When long-

term preference parameters are chosen such that the long-term receives a higher weight
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(roughly consistent with Weitzman’s (2001) survey results), short-term preferences can

be matched so that the model remains observationally equivalent to Nordhaus in terms

of macroeconomic performance, savings in particular. But carbon prices increase: for

very low long-term discounting, ultimately carbon prices approach those suggested by

Stern.2 Note that the equilibrium outcome – high carbon prices and realistic savings –

cannot happen in the first-best for such preferences, but only in the Markov equilibrium

describing how the climate decisions are de facto made given the order of moves in the

time line.

discount rate

short-term long-term savings carbon price

“Nordhaus” .02 .02 .25 8.4

Markov .027 .001 .25 116.9

“Stern” .001 .001 .30 152.4

Table 1: Equilibrium carbon prices in EUR/tCO2 year 2010.

What is then the first-best? The Markov equilibrium is not on the Pareto frontier,

and thus it is natural to look for policy rules that can at least partially overcome time-

inconsistencies and improve welfare. Can we improve welfare by imposing the Pigouvian

externality pricing of carbon as an institutional constraint? Using functional forms typical

for applied macro-economics enables us to analyze welfare consequences of various policy

rules, as in Krusell, Kuruscu and Smith (2002, 2010). We derive the formula for the

Pigouvian tax, depending on the same parameters as the equilibrium carbon price, and

then we impose this formula as a constraint on the equilibrium behavior – it can be

thought of as a rule of behavior for an environmental agency scrutinizing the climate

policies within each period. The result is striking: pricing carbon according to the

common principle that each unit of emissions should pay the present-value marginal

damages caused by that unit lowers welfare for all generations! That is, even if the present

generation and all future generations could commit to follow this rule, the commitment

would generate no social value, without additional policy measures.

We then look for policies that can actually improve welfare in a self-enforcing manner.

Another striking result follows: such policies lead to a further departure above and

beyond the Markov and thus Pigouvian carbon price levels. This result, arising from a
2Under “Stern”the capital-share of output is fully saved (30 per cent); increasing the capital-share

leads to unrealistic savings as discussed, e.g., in Weitzman 2007 and Dasgupta 2008.
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larger set of available strategies than Markov, corroborates the finding that the welfare

improving policies tend to disconnect variables determining macroeconomic outcomes

from those determining carbon pricing. The changing time-preference opens the door

for our conceptual results, but their quantitative significance follows from the unusual

delays in climate change. We develop and calibrate a tractable representation of the

carbon cycle, with the peak impact lagging 70 years behind the date of emissions. The

analytics allows us to decompose the contribution of the different layers of the climate

system to the carbon price: ignoring the delay of impacts – as in Golosov et al. 2011

– misses the correct price levels by a factor of 2, even when preferences are consistent.

We take the structure of preferences as given and focus on their general-equilibrium

climate policy implications; however, multiple recent arguments can justify them. First,

as already discussed, decision makers may not be able to distinguish the welfare in future

periods 100 and 101 as clearly as they can separate period 1 and 2. A decision pro-

cedure based on the long-run similarity implies a lower long-term discount factor than

that for the short-term decisions (see Rubinstein 2003 for the procedural argument; and

Karp 2005 for a climate application). Second, climate investments are public decisions

requiring aggregation over heterogenous individual time-preferences, leading again to a

non-stationary aggregate time-preference pattern, typically declining with the length of

the horizon, for the group of agents considered (Zeckhouser and Gollier 2005; Jackson

and Yariv 2011). We can also interpret Weitzman’s (2001) survey on experts’opinions

on discount rates as an aggregation of persistent views: the resulting social discount rate

declines from 4 per cent for the immediate future (1-5 years) to 1 for the distant future

(76-300 years), and then close to zero for the far-distant future. Third, the long-term

valuations must by definition look beyond the welfare of the immediate next genera-

tion; any pure altruism expressed towards the long-term beneficiaries implies changing

utility-weighting over time (Phelps and Pollak 1968 & Saez-Marti and Weibull 2005).3

Welfare analysis with incongruent preferences is potentially a complicated undertak-

ing. Our assumption is that agents in different periods are distinct generations, and

therefore the multi-generation Pareto optimality is a natural welfare concept.4 The wel-

fare analysis follows closely our working paper Gerlagh and Liski (2011), where we show

3The first and third arguments for using lower discount rates in the long run are directly consistent

with our formal model. For the second, we do not formally consider the aggregation of preferences, but

Jackson and Yariv (2011) show that utilitarian aggregation leads necessarily to a present bias.
4See Bernheim and Rangel (2009) for an alternative concept, and its relationship to the Pareto

criterion. The Pareto criterion may not be reasonable when the focus is on the behavioral anomalies at

the individual level.
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that a standard Bergsonian objective can be recovered (without dictatorial objectives) if

and only if an allocation is on the Pareto frontier (as, e.g., in Caplin and Leahy 2004).

The approach to welfare analysis is elementary but proves powerful in this setting. First,

we can easily show that the benchmark Markov equilibrium is not consistent with any

welfare objective. Second, the Pigouvian externality pricing restores productive effi ciency

in a very traditional sense, but the policy, as a stand-alone measure, can never generate

a welfare objective as defined above.

The paper is organized as follows. The next section introduces a simplified version of

the model in three periods to pinpoint the biases in the carbon prices, policy proposals,

as well as the main idea of the welfare analysis. The section has several subsections as

we want to clarify all stages of the main plot in three periods in order to avoid confusion

in the main model. Section 3 then introduces the full infinite-horizon climate-economy

model, and provides the first look at the numbers on carbon pricing. Section 4 calibrates

the full model with climate system parameters from the scientific evidence to generate

the climate-economy outcomes over the next thousand years – due to the unique delays

in the system non-trivial effects remain over such horizons. Section 5 concludes.

2 A three-period model

2.1 Technologies and preferences

Consider three generations, living in periods t = 1, 2, 3. In each period, consumers are

represented by an aggregate agent having a utility function and production technology.

Our three-period model is a very reduced-form model that captures some essential ele-

ments of the climate change problem, and serves to illustrate the preference structure,

some key assumptions, and the concepts for equilibrium and welfare analysis. In pe-

riod one, production depends on the use of fossil fuels, with associated emissions. In

period two, a substitute energy source has been developed, and consumption possibilities

depend on the capital stock inherited. In period three, emissions from the first period

have translated into a climate problem negatively affecting production. An allocation

(c,k, z) = (c1, c2, c3, k2, k3, z) ∈ A ⊆ R6
+ (convex set) constitutes a consumption level for

each generation ct, the first-period use of fossil fuels z, which we also consider a proxy

for the emissions of carbon dioxide emissions, and capital stocks k2 and k3 left for fu-

ture agents (k1 is given). Generations are assumed to have the following simple welfare

6



representation

w1 = u1(c1) + ρ[u2(c2) + θu3(c3)] (1)

w2 = u2(c2) + σ[u3(c3)] (2)

w3 = u3(c3), (3)

where all utility functions ut are assumed to be continuous and, in addition, strictly

concave, differentiable, and satisfying limc→0 u
′
t = ∞. Parameters ρ, θ, σ ∈ [0, 1] are

discount factors. To capture the idea of lower long-term discounting, we assume θ > σ,

so that the first agent gives a higher direct weight to the last period utility than the

middle agent.5 Here, we leave it open whether the short-term discounting differs across

agents σ = ρ, or not. In three periods, parameters ρ, θ, σ can all take different values,

but in the infinite-horizon setting we assume that each generation is born with the same

short- and long-run preferences as in Phelps-Pollak-Laibson setting.6

In the first period, the consumption possibilities are determined by a strictly concave

neoclassical production function f1(k1, z), where k1 is the capital stock, and z is the use

of fossil fuels, or emissions of carbon dioxide, both having positive marginal products,
∂f1
∂k

= f1,k,
∂f1
∂z

= f1,z > 0. The first generation starts with a capital stock k1, and

produces output using z, which can be used to consume c1, or to invest in capital for the

immediate next period k2:

c1 + k2 = f1(k1, z). (4)

For convenience we abstract from fossil-fuel use in the second and third period, but

the first-period fossil-fuel use impacts production negatively in the third period. The

second agent starts with the capital stock k2, produces output using a strictly concave

neoclassical production function f2(k2), and can use its income to consume c2, or to invest

5As in Phelps and Pollak (1968) or in Saez-Marti and Weibull (2005) this can be interpreted as pure

altruism towards the last generation. Alternatively, as in Karp (2005), following the idea of Rubinstein

(2003), θ > σ can reflect diffi culties in making far-distant comparisons. Aggregation necessary for public

policy making (e.g., Jackson and Yaari, 2011) is also consistent with θ > σ, but modeling aggregation

procedure is beyond our scope in this paper.
6We can obtain the common β, δ model as in Phelps-Pollak-Laibson if ρ = σ, by defining β = ρ/θ

and δ = θ. Then, w1 = u1 + βδu2 + βδ2u3 and w2 = u2 + βδu3. Inconsistencies are identified by

β < 1, corresponding to θ > σ in our case. For our purposes, it is slightly more straightforward to name

the long-run weights as θ and σ. The weight ρ allows some freedom in terms of interpretations (e.g.

the length of a period may be different for t = 1, 2, 3) but is inconsequential for the consistency of the

preferences.
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in capital for the third period k3:

c2 + k3 = f2(k2). (5)

The third consumer derives utility from its consumption, which equals production. Past

emissions now enter negatively, as damages, in the production function, f3,k > 0, f3,z < 0:

c3 = f3(k3, z). (6)

We assume that also this production function is strictly concave.

2.2 Equilibrium carbon price

Consider now the subgame-perfect equilibrium of the game where generations choose

consumptions and emissions in the order of their appearance in the time line, given the

preference structure (1)-(3) and choice sets defined through (4)-(6).

The third agent consumes all capital received and cannot influence past emissions.

The second agent decides on the capital k3 transferred to the third agent, given the

capital inherited k2 and the emissions z chosen by the first agent. We thus have a policy

function k3 = g(k2, z). The policy is defined by

max
k3

u2(c2) + σu3(f3(k3)), (7)

leading to equilibrium condition

u′2 = σu′3f3,k ⇒ 1 =
R2,3

MRSσ2,3
, (8)

where we use introduce the notation Ri,j for the rate of return on capital from period

i to j, and MRSσ2,3 for the absolute value of the marginal rate of substitution between

consumptions in 2 and 3 for discount factor σ.

The strict concavity of utility implies consumption smoothing, and thus if the second

agent inherits marginally more capital k2, the resulting increase in output is not saved

fully but rather split between the second and third generation:

Lemma 1 Policy function g satisfies 0 < gk < R1,2.

Proof. Substitute the policy function k3 = g(k2, z) in (8),

σu′3(f3(g(k2, z), z))f3,k(g(k2, z), z) = u′2(f2(k2)− g(k2, z)). (9)
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Full derivatives with respect to k2 lead to

σgk(u
′′
3f3,kf3,k + u′3f3,kk) = u′′2(f ′2 − gk)

⇒ gk =
f ′2u

′′
2

σu′′3f3,kf3,k + σu′3f3,kk + u′′2
< f ′2 = R1,2. (10)

as u′′t , f3,kk < 0 and f3,k, u
′
3 > 0.

Understanding the second agent’s policy, the first agent decides on consumption and

fossil-fuel use to maximize its welfare

w1 = u1 + ρ[u2(f2(k2)− g(k2, z)) + θu3(f3(g(k2, z), z)].

The choice for savings k2 satisfies

u′1 = ρ(f2,k − gk)u′2 + ρθf3,kgku
′
3

⇒ MRSρ1,2 = R1,2 + (
θ

σ
− 1)gk. (11)

When θ = σ, preferences are consistent, and the term in brackets vanishes as in

standard envelope arguments for single decision makers; capital k is then valued according

to the usual consumption-based asset pricing equation MRSρ1,2 = R1,2. For θ > σ, the

second agent has a steeper indifference curve between consumptions in periods 2 and 3:

the first-order effect in the bracketed term remains positive, leading to capital returns

that no longer reflect the first generation’s consumption trade-offs. Letting MRSρ,θ1,3 =

MRSρ1,2 ×MRSθ2,3, we have

Lemma 2 The compound capital return satisfies MRSρ,θ1,3 < R1,3 if and only if θ > σ .

Proof. Using (11), MRSθ2,3 = σ
θ
MRSσ2,3 = σ

θ
R2,3, and Lemma 1:

MRSρ,θ1,3 = MRSρ1,2 ×MRSθ2,3 =

[
R1,2 + (

θ

σ
− 1)gk

]
×MRSθ2,3

⇒ MRSρ,θ1,3 =

[
R1,2 + (

θ

σ
− 1)gk

]
σ

θ
R2,3

<

[
R1,2 + (

θ

σ
− 1)R1,2

]
σ

θ
R2,3 = R1,3,

where the inequality holds iff θ > σ.

Capital returns are generally excessive from the first agent’s point of view when

θ > σ, that is, the result holds without any restrictions on how emissions alter savings.

But for the implications of the excessive capital returns on carbon pricing we must make
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assumptions on the effect of first-period emissions on the second-period policy, gz; these

restrictions are common in the integrated assessment models, including ours and, e.g.,

Golosov el al. (2011), so we explicate them here. Taking the full derivatives of (9) with

respect to z, we get

gz = − σ(u′′3f3kf3,z + u′3f3,kz)

u′′2 + σu′′3f3,kf3,k + σu′3f3,kk

.

The first term in the numerator captures the income effect of emissions and is positive.

If the first generation emits more, the third generation has lower utility levels and the

second generation will tend to save more, as the marginal utility of the third generation

increases. The second term in the numerator captures the productivity effect and is

negative. If the first generation emits more, productivity of capital in the third period

will fall, and the return to investments in the second period will fall alongside. Assuming

log utility, and that the production damage is multiplicative

ut(ct) = ln(ct) (12)

f3(k3, z) = f3(k3)ω(z), (13)

where ω(z) is a strictly decreasing damage function, implies that the direct effect of

emissions on savings vanishes, gz = 0, as can be easily verified from (8).

Consider then the first generation’s equilibrium carbon policy z:

u′1f1,z = ρgzu
′
2 − ρθ(f3,kgz + f3,z)u

′
3. (14)

Throughout this paper, we impose (12)-(13) and thus gz = 0, so that the carbon policy

implied by (14) is described by

MRSρ,θ1,3 =
MCD

MCP
(15)

where we let MCP = f1,z denote the marginal carbon product, and MCD = −f3,z

denote the marginal carbon damages. If θ = σ, then capital returns reflect consumption

trade-offs, MRSρ,θ1,3 = R1,3, so that from (15) the carbon price becomes just equal to the

damage, discounted with capital return:

MCP =
MCD

R1,3

. (16)

This is the general-equilibrium Pigouvian carbon price, under consistent preferences θ =

σ (or if the first agent could commit to his first-best). However, if θ 6= σ, in equilibrium,

while (15) still holds, Lemma 2 implies that the discounted damage no longer equals the

carbon price:

MCP >
MCD

R1,3

if and only if
θ

σ
> 1. (17)
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In equilibrium, the first agent establishes a higher carbon price, compared to the Pigou-

vian level, if and only if σ < θ, i.e., when the first agent gives a higher weight to the

long-term utility than the second agent. The result has a very simple intuition. The

first consumer would like to transfer more wealth to the third consumer, compared with

the preferred wealth transfer of the second consumer: the high capital returns reflect

this distortion and therefore depress the present-value damage below the true valuation

emissions reductions by the first consumer. The opposite distortion – too low carbon

price– occurs if σ > θ.

Proposition 1 Assume (12)-(13). If preferences are inconsistent (σ 6= θ), the first-

period carbon price does not satisfy the Pigouvian pricing rule, i.e., MCP 6= MCD
R1,3

. The

carbon price exceeds the Pigouvian level if and only if σ < θ.

Proof. Above.

Note that in this general-equilibrium setting the market return R1,3 depends both

on the demand for savings (technology) and the supply for savings (preferences), so the

Pigouvian carbon price MCP = MCD
R1,3

is tied to the savings in equilibrium. This is the

reason why in standard climate-economy models, the carbon pricing is dictated by the

same parameters that are used to calibrate the model to match savings behavior. The

result in (17) is the simplest possible illustration of the point in our paper: in the climate

policy game, the carbon pricing is disconnected from the equilibrium capital return.

This result opens a number of questions that will be subsequently analyzed. Since the

result arises in a strategic interaction equilibrium, it clearly cannot reflect a fully effi cient

outcome. Would enforcing the Pigouvian rule MCP = MCD
R1,3

improve welfare? More

generally, we ask how an optimal policy would look like, or whether we can quantify the

effects using a more detailed climate-ecomy model.

2.3 Welfare, effi ciency, and the Pigouvian rule

To address welfare implications of policies considered we need to develop a consistently

defined welfare measure.7 Consider an allocation (c,k, z) that is Pareto effi cient for

welfare levels (w∗1, w
∗
2, w

∗
3) defined in (1)-(3). If we maximize w1, subject to the constraints

w2 ≥ w∗2, and w3 ≥ w∗3 and feasibility constraints (4)-(6), then we must find the same

allocation, and non-negative Lagrange multipliers (α, β) ∈ R2
+ for the welfare constraints.

7This development follows closely Gerlagh and Liski (2011).
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That is, the Pareto effi cient allocation is also the solution of a welfare programmaximizing

W (c,k,z) = w1 + αw2 + βw3 (18)

= u1 + (ρ+ α)u2 + (ρθ + ασ + β)u3 (19)

subject to (4)-(6). The conclusion also holds the other way around: any solution to a

welfare maximization program with some (α, β) ∈ R2
+ is Pareto effi cient. Strict con-

cavity of the production and utility functions ensures the uniqueness of the allocation.

Therefore, we can associate any Pareto effi cient allocation with a pair of non-negative

welfare weights (α, β) ∈ R2
+, and also with a “Planner”whose objective function is the

correspondingW (c,k, z) giving some non-negative weight for all generations. If and only

if weights are non-negative, we say that the Planner is representative, and the allocation

is Pareto effi cient. The Planner is merely a tool for welfare analysis, and not intended

to introduce dictatorial preferences over allocations: given the equilibrium allocation, we

will see if parameters α, β and thus a representative Planner can be attached to it. If

yes, the allocation satifies the Pareto criterion as defined.

Note that (19) defines weights on utilities (u1, u2, u3) that go together with non-

negative (α, β). In equilibrium, however, we do not directly observe (α, β) but only the

weights on utilities, and so the welfare objective W may not exist even though there is

an objective expressed in term of utilities. Consider some feasible equilibrium allocation

(c,k, z) implying a stream of utilities (u∗1, u
∗
2, u
∗
3), such that the allocation maximizes

U(c,k,z) = u1 + α′u2 + β′u3 (20)

for some positive utility weights (α′, β′) ∈ R2
+. If such positive weights exist, the allocation

is observationally equivalent to a Planner’s optimum with objective U(c), or shortly, the

equilibrium is Planner-equivalent – if and only if the utility weights are positive, we say

that the allocation is Planner-equivalent.8 Whether the Planner defined this way is also

representative (α, β ≥ 0) determines if the allocation is effi cient.

Pigouvian carbon pricing goes together with effi ciency (necessity) but does not imply

it (suffi ciency). We can now show this using the above concepts. For any Planner-

equivalent allocation, we have α′ > 0 and β′ > 0, and the first-order conditions for

8Since each period utility only depends on one consumer good, maximizing a weighted sum of ut,

is equivalent to maximizing a weighted sum of ct, and we can interpret Planner-equivalence as being

indicative of productive effi ciency.
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{k2, k3, c1, c2, c3} tell us that any Planner-equivalent allocation satisfies:

1 = [
α′u′2
u′1

]f2,k = [
β′u′3
u′1

]f2,kf3,k (21)

⇒ 1 =
R1,2

MRS1,2

=
R1,3

MRS1,3

, (22)

where we drop superscripts on MRS. For emissions in the first period z, the first-order

condition requires u′1f1,z + β′u′3f3,z = 0, which we can, again, rewrite as

MCP =
MCD

MRS1,3

, (23)

which together with previous equations leads to the Pigouvian pricing rule

MCP =
MCD

R1,3

. (24)

The Pigouvian principle is a necessary and suffi cient test for the existence of a Planner

(not yet representative).

Lemma 3 An allocation with strictly positive consumption, capital, and fuel use is Planner-

equivalent: it maximizes U(c,k, z) with positive α′ and β′, if and only if the Pigouvian

rule (24) is satisfied.

Proof. Necessity of the cost-benefit rule has been established above. For suffi ciency,

we notice that given the allocation, we can construct positive weights α′ and β′ from (21)

such that with these weights the Planner prefers not to deviate from {k2, k3, c1, c2, c3}.
Rule (24) then ensures that the first-order condition for z is also satisfied.

The equivalence will be instrumental in our equilibrium analysis. If the Pigouvian

rule is not satisfied, the equilibrium allocation implies that no Planner can exist. We have

seen that in equilibrium the Pigouvian rule will not hold, so the conclusion for effi ciency

is immediate:

Corollary 1 The equilibrium described in Proposition 1 is not Planner-equivalent if σ 6=
θ.

This conclusion follows from Lemma 3 which shows that the allocation can be inter-

preted as some Planner’s allocation (including the representative Planner) if and only if

the Pigouvian rule holds. Since the equilibrium deviates from the rule, we cannot find

positive welfare weights that would support the equilibrium outcome as Pareto effi cient.
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Can we then obtain effi ciency by enforcing the Planner-equivalence, i.e., the Pigouvian

rule? We now impose such a restriction as an institutional constraint on the equilibrium

behavior – it can be thought of as an environmental agency scrutinizing the climate

policies within each period. The environmental agency has no preferences, and it simply

enforces the Pigouvian taxes, without restricting the choices of each generation in any

other way.9

Proposition 2 Enforcing Pigouvian externality pricing leads to a Planner-equivalent but

not to a representative (effi cient) outcome if preferences are hyperbolic, σ < θ.

Proof. We have seen in Lemma 3 that the Pigouvian tax rule implements planner

equivalence, so that from the first-order conditions for c2, c3 and k3 we have

α′u′2 = β′u′3f3,k.

As the second generation does not need fossil fuels, the policy function g does not change.

Substituting the second generation policy rule (8) gives

β′ = σα′.

Adding ρ(θ − σ) > 0 to the right-hand side,

β′ < ρθ + (α′ − ρ)σ.

However, in view of (19), welfare weights associated with utility weights α′ and β′, are

positive if and only if

α′ ≥ ρ (25)

β′ ≥ ρθ + (α′ − ρ)σ. (26)

While enforcing Pigouvian externality pricing does not lead to full effi ciency, could

we obtain at least a Pareto improvement? In three periods, it is immediate that the

answer is negative. The Pigouvian tax will constrain only the first generation’s choices

for fossil fuel use. It follows that the first generation has lower welfare as its preferred

investment-emission reduction policy is ruled out.

9If preferences are time-inconsistent in the other direction, σ > θ, the proof is much more tedious,

and we leave the analysis of this case to the infinite horizon model.
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Proposition 3 The Pigouvian tax does not imply a Pareto improvement vis-a-vis the

equilibrium without it.

The reason for this result is simple: the Pigouvian tax is only a constraint on the first

generation, as it could have implemented the same allocation without the rule, or without

consulting the later generations. Therefore, enforcing the Pigouvian tax must decrease

welfare of the first generation if θ 6= σ. If preferences are time-consistent, imposing the

Pigouvian tax has no effect on the equilibrium, so the requirement becomes redundant.

2.4 Discussion

The main plot should be clear after this three-period analysis. The carbon price that

is optimal from the current generation’s perspective, given future strategies, can be dis-

connected from capital returns, due to the commitment value of climate policies; see

Proposition 1. The full model below is designed to quantitatively assess this observation.

The infinite-horizon model adds to the analysis in multiple ways. First, in three periods

there is not much room for policy analysis. For example, generation 1 cannot benefit

from the later generations’adherence to the Pigouvian tax, without having a longer se-

quence of generations. As we will see at the end of the next section, the infinite horizon

potentially offers the option for welfare-improving policies. Second, as is well known, the

delays of impacts in climate change are important, and, in our case even more so, since

the commitment value of policies depends precisely on how persistent are the impacts of

current choices over time. The infinite horizon model enables us to provide analytical

results that prescribe the equilibrium carbon prices dependent on technology, climate,

and preference parameters. Third, the infinite horizon model enables us to provide a

quantitative assessment of the magnitudes using realistic parameters values.

3 Infinite horizon model

3.1 Technologies and preferences: general setting

Consider a sequence of periods t ∈ {1, 2, ...} and a fossil-fuel use history

st = (z0, z1, ..., zt−2, zt−1)

where zt denotes fossil-fuel use at time t. We let production possibilities depend on the

emission history (i.e., past fossil-fuel use), capital kt, labour use lt, and current fossil fuel
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use zt, and denote the production function by ft(kt, lt, zt, st). History st can enter for two

reasons: first, it captures damages from historical emissions as in integrated-assessment

models following the Nordhaus’tradition; and second, the fuel use can be linked to the

energy resources whose availability and cost of use depends on the past usage. In the

specific model below, we abstract from the latter type of history dependence.10 Let δ ≤ 1

denote the capital depreciation factor. Then, the budget accounting equation between

period t and t+ 1 is

ct + kt+1 = ft(kt, lt, zt, st) + (1− δ)kt, (27)

where ct is the total consumption and kt+1 is the capital left for the next period. In each

period, the representative consumer makes the consumption, fuel use, and investment

decisions. Let per-period utility be ut and define generation t welfare generated by

sequence {ct, zt, kt}∞t=1 as

wt = ut + ρ
∑∞

τ=t+1
θτ−t−1uτ (28)

where we identify dynamically consistent preferences by θ = ρ, so that each future period

τ > t is discounted with the same discount factor θτ−t. Using the same motivations as

in three-periods, decision-makers use lower discount rates for long-term evaluations than

for short-term evaluations, ρ < θ, but the formal analysis is not restricted to this quasi-

hyperbolic setting; for interpretations, the quasi-hyperbolic case is the most natural to

keep in mind, but we will state explicitly the formal results that require ρ < θ. One

interpretation is that each generation lives for one period, so that the immediate next

generation wealth is discounted with factor ρ (children), while the subsequent genera-

tion is discounted at a lower additional rate captured through θ. As is well-known, if

the current generation ignores all future generations’wealth but for that value coming

through the immediately next generation’s wealth, then the future utilities are discounted

in a dynastic manner using the same effective utility discount factor ρ for all periods.

Instead, if some direct weight is given to future generations’wealth, in addition to the

weight given indirectly through the immediately next generation, the current generations

expresses pure altruism towards them, and the discount factor must satisfy θ > ρ; see

Saez-Marti and Weibull (2005). For convenience we will interchangeably refer to periods

and generations by t.

10We could introduce finite fossil-fuel resources as in Golosov et al. (2011). However, since the long-

term carbon pricing is described by energy-resource use where the cost structure does not depend on

history, we abstract from this transitory phase.
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3.2 The basis climate-economy model

The production side of our specific climate-economy model follows Golosov et al. (2011)

which marks an important deviation from Nordhaus’(e.g., 1993) approach to integrated-

assessment modeling: abatement does not enter as a separate decision variable but it is

only implied by the choices for energy production. However, our modeling of the climate

dynamics and preferences depart substantially from both Golosov et al. and Norhaus.

The use of functional forms typical for the applied macro-economics literature enables

us to find closed-form solutions under various policy options (cf. Krusell, Kuruscu and

Smith 2002, 2010). We pull together the production structure as follows:

yt = kαt At(ly,t, et)ω(st) (29)

et = Et(zt, le,t) (30)

ly,t + le,t = lt (31)

ω(st) = exp(−∆yDt), (32)

Dt =
∑
j

[(1− εj)tDj,0 +
∑
i

t−1∑
τ=1

aibjπεj
(1− δi)τ − (1− εj)τ

εj − δi
zt−τ ] (33)

Production. We have the following components of gross production: (i) the Cobb-

Douglas capital part kαt ; (ii) function At(ly,t, et) for the energy-labour composite in the

final good sector, (iii) the energy production using fossil fuels and labour captured by

Et(zt, le,t), and (iv) the damage part given by function ω(st) capturing the output loss of

production depending on the history of emissions from the fossil-fuel use. The energy-part

of production Et(zt, le,t) could be made dependent also on the full history of fossil-fuel

use st, as fossil-fuel extraction costs can be explicitly modeled and their total availability

can be linked to the cumulative fossil-fuel use. We abstract from such dependence as this

allows describing the savings and emissions policies without the specification of functions

At and Et; we provide such a specification and describe the energy sector in detail in the

quantitative analysis section 4.

We assume that capital depreciates in one period, δ = 1 (one period will be 10 years

in the quantitative section).

Damages and carbon cycle. The exponential form in ω(st) approximates the

damage function that is used in many integrated assessment models with explicit variables

for atmospheric CO2 concentrations and temperature change. The exponential form with

linear terms within the exponent has been used by Golosov et al. (2011), but we introduce

a more detailed delay-structure for the emission impacts that leads to markedly different

carbon price calculations, even without preference inconsistencies. The variable Dt is
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a proxy for the squared value of the global mean earth surface temperature rise. We

explain now how expression (33) for Dt is derived.

Climate change dynamics can be described in reduced form through a multi-box

model for atmospheric CO2 stocks. This is a common approach in integrated assessment

models to describe the carbon cycle as a diffusion process between various layers of the

atmospheric, the ocean and the biosphere (Hasselmann et al. 1997).11 Let there be

multiple atmospheric CO2 boxes, labeled i, such that share ai of antropogenic emissions

enter box i,
∑

i ai = 1, while the depreciation rate of box i is δi. The stock Si in box i

develops according to

Si,t = (1− δi)Si,t−1 + aizt−1

St =
∑

i
Si,t

where zt is fossil fuel energy use, expressed here in GtonCO2.

Given the atmospheric CO2 stock, the temperature adjusts slowly. Similarly to the

atmospheric CO2 module, we model temperature adjustment through a multi-box system.

Typically, temperatures are considered dependent on atmospheric CO2 through a concave

function (the logarithm is often used as an approximation), while damages depend on

temperatures through a convex function, e.g. quadratic. Within the domain of relevant

CO2 concentrations up to 1000 ppmv,12 the chain of the concave and convex function,

leads to an almost linear relationship between stocks and damages.13 We use the variable

Dj,t as a proxy for squared temperature for box j. Let π be the sensitivity of (squared)

temperature for atmospheric CO2, so that if St is constant then Dt = πSt follows as the

stationary state of the climate, and εj is the adjustment speed of the j − th box, with
weight bj,

∑
j bj = 1:14

Dj,t = Dj,t−1 + εj(bjπSt −Dj,t)

Dt =
∑

j
Dj,t

11For example, a 3-box model almost perfectly fits the CO2 dynamics in DICE (Nordhaus 2007). The

illustration is available on request.
12ppmv=parts per million by volume.
13Indeed, the early calculations by Nordhaus (1991) based on local linearization, are surprisingly close

to later calculations based on his DICE model with a full-fledged carbon-cycle temperature module,

apart from changes in parameter values based on new insights from natural sciences.
14The constant π is the climate sensitivity; stated differently, 1/π is the amount of atmospheric CO2

that leads to a long-term temperature increase of 1 Kelvin. The estimation of the reduced-form carbon

cycle model is based on complex carbon-cycle models, e.g. Maier-Reimer and Hasselman (1987) and

Hooss et al. (2001), IPCC (2007).
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Given these two layers of climate variables, it is a straightforward matter of verification

that future damages depend on past emissions linearly as:

Si,t = (1− δi)t−1Si,1 +
∑t−1

τ=0
ai(1− δi)τ−1zt−τ (34)

Dj,t = (1− εj)tDj,0 +
∑

i

∑t−1

τ=1
aibjπεj

(1− δi)τ − (1− εj)τ
εj − δi

zt−τ , (35)

where expression (35) leads to (33). The two layers are an important part of the carbon-

temperature-cycle model, as they introduce a time-lag between emissions and the peak

in damages; the term within the summation signs peaks at a period between 1/δi and

1/εj. For the most simple 1-box representation, a typical estimate for the atmospheric

CO2 depreciation δ1 is one per cent per year, while for the temperature adjustment ε1 it

is two per cent per year; the associated peak in temperature-response is after about 70

years. In other words, peak temperatures lag 70 years behind emissions, providing a rule

of thumb for discounting damages: discounting future damages at a rate of r per cent per

year results in a discount factor of about 2−r after 70 years. An annual 1, 2 or 3 per cent

discount rate results in a discount factor of damages of 1/2, 1/4, or 1/8, respectively.

Golosov et al.’s (2011) specification can be understood as one where the temperature

adjustment is immediate: εj = 1, an emission impulse leads to an immediate temperature

shock that slowly decays. A reduced-form model that proxies the DICE model (Nordhaus

2007) shows an emissions-damage peak after 60 years, while the reduced-form model we

employ here for ω(.), based on the natural sciences literature, produces a peak in the

emission-damage response function after about 80 years. Additionally, it has a fat tail:

about 16 per cent of emissions does not depreciate within the horizon of thousand years.

The function ω(st) captures the essence of the climate change delays, and will be used

both in the analytical and the quantitative section. The Appendix compares the response

functions graphically for Nordhaus (2007), Golosov et al. (2011), and in our model.

Periodic utility. We assume that the utility function is logarithmic, and through

a separable linear term we also include the possibility of intangible damages associated

with climate change:

ut = ln(
ct
lt

)−∆uDt. (36)

The utility loss ∆uDt is not necessary for the substance matter of this paper, but it

proves useful to explicate how it enters the carbon price formulas; however, in calibra-

tion, we let ∆uDt = 0 to maintain an easy comparison with the previous studies.15 It is

15When temperature rise is continuous for the next centuries, many ecosystems will not be able to

adapt quickly enough and the loss of biodiversity will be inevitable, which may negatively and directly
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important to note that we write utility as an average in our analysis. Alternatively, we

can write aggregate utility within a period by multiplying utility with population size,

ut = lt ln(ct/lt) − lt∆uDt. The latter approach is feasible but it leads to considerable

complications in the formulas below.16 Scaling the objective with labor rules out sta-

tionary strategies – they become dependent on future population dynamics – , and also

impedes a clear interpretation of inconsistencies in discounting; while the formulas in the

lemmas depend on this assumption, the substance of the Propositions is not altered.

Strategies. The equilibrium outcome depends on the equilibrium concept, and on

the restrictions on strategies that will be used. Our starting point is the symmetric and

stationary Markov equilibrium. Symmetry means that all generations use the same policy

functions – even though there is technological change and population growth, the form

of the objective in (36) ensures that there will be an equilibrium where the same policy

rule will be used for all t. Markov restriction means that the policy does not condition

on the history of past behavior. Moreover, we impose differentiability of the policy in

the states (see Krusell et al. (2002) and Karp (2007) for implications following from

eliminating the symmetry and differentiability restriction). In equilibrium, the policy

will take the form kt+1 = gt(kt, st), zt = ht(kt, st), where st enters as the weighted sum of

past emissions as expressed in (33); history st matters for strategies through its effect on

the current stocks Si,t and Dj,t in the climate system.17 In a later section, we consider

non-stationary strategies that support other than Markov savings and emissions rules.

Structure of equilibria. Given the policies gt(kt, st) and ht(kt, st), we can write the

welfare in (28) as follows

wt = ut + ρWt+1(kt+1, st+1),

Wt(kt, st) = ut + θWt+1(kt+1, st+1)

where Wt+1(kt+1, st+1) is the (auxiliary) value function. All equilibria considered in this

paper, whether Markov, non-stationary,18 or generated by a Pigouvian tax rule, will be

of the form where constant 0 < g < 1 of the gross output is invested,

kt+1 = gyt, (37)

affect the future welfare.
16The expressions for this case are available on request
17As will be seen shortly, these stocks are not payoff-relevant, and therefore it proves useful to work

directly with st in the expressions below.
18We will consider non-stationary strategies where on-the-path strategies have this form.
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whereas the climate policy defines fossil-fuel use and thus emissions are determined

through a constant h satisfying

ft,z = h(1− g)yt, (38)

where ft,z = MCPt is the marginal product of fossil fuel use, the carbon price. Policies

will be characterized simply by a pair of constants (g, h)! That a constant fraction of

output is saved should not be surprising, given log utility and Cobb-Douglass production;

even with inconsistent preferences, the stationary strategies take this form.19 Condition

(38) implies that the marginal carbon price per consumption is a constant, h = ft,z/ct

where ct = (1 − g)yt, which may seem suprising given the complicated delay structure

(33), and changing productivities in (29)-(33), and preference inconsistencies.20

Postponing the discussion on welfare and the verification that the policies actually

take the above form, it proves useful to state the properties of the value function implied

by a (g, h) policy (the proofs, unless helpful in the text, are in the Appendix).

Lemma 4 (separability) Given the model (29)—(36), assuming that future policies gτ (·)
and hτ (·) for τ = t+ 1, t+ 2, ... satisfy (37) and (38), then the value function is additive

in capital and historical emissions

Wt+1(kt+1, st+1) = Vt+1(kt+1)− Ω(st+1).

with parametric form

Vt+1(kt+1) = ξ ln(kt+1) + Ãt+1

Ω(st+1) =
t−1∑
τ=1

ζτzt+1−τ .

where ξ = α
1−αθ , ζ1 = ( ∆y

1−αθ + ∆u)
∑

i

∑
j

aibjπεj
[1−θ(1−δi)][1−θ(1−εj)] , and Ãt+1 is independent of

kt+1 and st+1.

The result shows that we can obtain the value of savings kt+1 and the costs from

fossil-fuel use zt separately.

19See, e.g., Barro 1999, for the analysis of the one-capital good case.
20Golosov et al. find emission policies that have the same features; our policies are from the same

class of functions, which explains the similarity.

21



3.3 Markov equilibrium carbon price

Consider first savings. Each generation takes the future policies, captured by constants

(g, h) in (37)-(38), as given and chooses its current savings to satisfy

u′t = ρV ′t+1(kt+1),

where function V (·) from Lemma 4 captures the continuation value implied by the equi-

librium policy.

Lemma 5 (savings) The equilibrium investment share g = kt+1/yt is

g∗ =
αρ

1 + α(ρ− θ) . (39)

The proof of the Lemma is a straightforward verification exercise following from the

first-order condition. The savings depend only on the capital share α and preference

parameters; note that when preferences are consistent θ = ρ, we obtain g = ρα , as is

expected.

Consider then the equilibrium carbon price ft,z, that is, the marginal product of the

fossil-fuel use zt. The first-order condition is

u′tft,z = ρ
∂Ω(st+1)

∂zt
,

where function Ω(.) gives the future costs implied by the equilibrium policy. Given

Lemma 4, the equilibrium carbon price and the fossil-fuel use is immediate:

Lemma 6 Equilibrium emissions zt = z∗t depend only on the current technology at period

t as captured through At(.) and Et(.). The carbon price satisfies (38) where h∗ = ρζ1:

MCPt = ft,z = ρζ1(1− g)yt (40)

ρζ1 =
∑

i

∑
j

( ∆y

1−αθ + ∆u)ρπaibjεj

[1− θ(1− δi)][1− θ(1− εj)]

The Markov equilibrium carbon price depends, not surprisingly, on the delay structure

in the carbon cycle captured by parameters δi and εj for each box. It is easy to see

that carbon prices increase with climate sensitivity (∂ζ1/∂π > 0) and a slower carbon

depreciation (∂ζ1/∂δi < 0), and decrease with slower temperature adjustment (∂ζ1/∂εj >

0), while higher short- and long-term discount rates both decrease the carbon price

(∂ζ1/∂ρ > 0; ∂ζ1/∂θ > 0).
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3.4 The Pigouvian tax rule

The Pigouvian rule for carbon pricing states that all social costs of carbon emissions at

time t should be imposed on polluters at t. It is of interest to see if and how the Markov

policy deviates from this principle, and, then, if any welfare gains can be achieved by

imposing the Pigouvian tax rule as an institutional constraint on the equilibrium. We

explain first the deviation and explore the welfare implications in Section 3.6.

The social cost of current emissions is the present-value marginal damages caused

by those emissions, and it thus depends on the discount factor used in the calculations.

Which discount factor should be used? For policy rules satisfying (37)-(38), we obtain

savings and emissions decisions separately (Lemma 4): we can first find savings, and use

the implied utility discount factor for determining the present-value damages and thus

for the Pigouvian emissions policy. Let 0 < γ < 1 denote implied utility discount factor

obtained, in equilibrium, from

u′t = γu′t+1Rt,t+1

where Rt,t+1 is the capital return between t and t+ 1. Thus,

γ =
u′t

u′t+1Rt,t+1

=
ct+1

ctRt,t+1

=
ct+1

ct

kt+1

αyt+1

=
g

α
. (41)

In Markov equilibrium where g = g∗, we have

γ∗ =
ρ

1 + α(ρ− θ) , (42)

but γ can also deviate from this if the equilibrium is non-Markovian. Since we come back

to such policies shortly, we label the Pigouvian tax by the superscript γ, as the formula

provides the carbon price as a function of the utility discount factor γ.21

Lemma 7 The net present value of marginal damages of emissions, referred to as the

Pigouviant tax, τ γt is proportional to gross output,

τ γt = hγ(1− g)yt (43)

hγ =
∑

i

∑
j

( ∆y

1−g + ∆u)γπaibjεj

[1− γ(1− δi)][1− γ(1− εj)]
(44)

where yt is gross production.

21The formula has wider applicability than this positive context where the utility discount rate is

derived from actual savings decisions: we could apply it to determine Pigouvian taxes based on normative

considerations of equity, leading to higher or lower values for γ. We can also inversely determine the

utility-discount factor that would be required to justify a certain carbon price.
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The Pigouvian tax policy imposes the rule that marginal productivity of emissions

should equal the Pigouvian tax, ft,z = yt
Ate
At
Et,z = τ γt . We can now compare the two

carbon prices:

Proposition 4 For θ > ρ, the equilibrium carbon price strictly exceeds (falls short of)

the Pigouvian carbon price if climate change delays are suffi ciently long (short). That is,

for γ defined by (42), if δi and εj are close to zero:

ft,z > τ γt

while ft,z < τ γt if δi and εj are close to one. For θ < ρ the inverse relation holds.

If θ > ρ, preferences are quasi-hyperbolic, and if, in addition, the climate system is

suffi ciently persistent, then the current generation sees the climate asset as a commitment

device, and therefore values external cost above the Pigouvian level.

3.5 First look at numbers

For the Markov and Pigouvian carbon prices in (43) and (40), we do not have to solve the

full model: the initial income, savings, and the carbon cycle parameters allow obtaining

the initial carbon price levels. We explicate the procedure for calibrating the carbon cycle

in Appendix.22. We note here only that the model is decadal (10-year periods),23 and

that our box presentation of the carbon cycle, when compared to DICE 2007, results in

a slightly lower response of damages to emissions for the first 80 years, and substantially

higher damages after 300 years.24 That is, our parameters suggest a slightly slower and

more persistent climate response.25

We seek to calibrate the model to match the case presented in Nordhaus (2007) as

a benchmark. For example, assuming damages equivalent to 2.7 per cent of output at

a temperature rise of 3 Kelvin, as in Nordhaus (2001), we obtain ∆y = 0.003; we set

22Appendix "Calibration: carbon cycle"
23Bill Nordhaus suggested to us that the period length could be longer, e.g., 20-30 years to better

match the idea that the long-term discounting starts after one period for each generation. We agree but

decided to keep the model decadal as the physical model loses precision with longer time steps.
24see Appendix "Comparisons of damage responses".
25The main reason for the deviation is that DICE assumes an almost full CO2 storage capacity for

the deep oceans, while large-scale ocean circulation models point to a reduced deep-ocean overturning

running parallel with climate change (Maier-Reimer and Hasselman 1987). In addition, there is a positive

feedback from temperature rise to atmospheric CO2 through the ocean release, which is essential to

explain the large variability observed in ice cores in atmospheric CO2 concentrations.
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∆u = 0. The annual pure time discounting of 2 per cent, leads to a 25 per cent gross

savings rate and a Pigouvian carbon price of 8.4 Euro/tCO2, equivalent to 40 USD/tC.26

This is number for 2010 is very close to the starting level of the Nordhaus’Pigouvian

tax.27

We can decompose the carbon price into three parts. First, consider the one-time

costs if damages were immediate (ID) but only for one period,28

ID = (
∆y

1− αθ + ∆u)π(1− g)yt,

where 1 − αθ is replaced by 1 − αγ = 1 − g for the Pigouvian tax rule. This value is

multiplied by a factor to correct for the persistence of climate change, the persistence

factor (PF ),

PF =
∑

i

ai
[1− θ(1− δi)]

which we then multiply by a factor to correct for the delay in the temperature adjustment,

the delay factor (DF ),

DF =
∑

j

bjρεj
1− θ(1− εj)

Table 2 below presents the decomposition of the Pigouvian tax, as well as the Markov

tax when the short-term annual discount rate is 2.55 and the long-term is rate .5 per

cent; we discuss these choices shortly.

ID PF DF Carbon price

Pigou 7.61 2.44 .45 8.4

Markov 8.05 5.76 .63 29.4

Table 2: Decomposition of Carbon price, MCP [Euro/tCO2]. ID=immediate costs,

PF=persistence factor, DF=delay factor, MCP = ID × PF ×DF . Parameter values
in the text.

Leaving out the time lag between CO2 concentrations and temperature amounts to

replacing the column DF by ρ: abstracting from the delay in temperature adjustments,

as in Golosov et al. (2011), increases the Pigouvian carbon price by almost factor 2.

26Note that 1 tCO2 = 3.67 tC, and 1 Euro is about 1.3 USD.
27Minor differences are caused by a correction for the price index, and a somewhat more persistent

damage structure in our reduced model
28the term for ∆y is adjusted to account for the decrease in the future capital stock caused by a current

drop in output.
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From Table 2, the Markov carbon prices stand at 29.4 Euro/tCO2, three and half

times the Pigouvian level (and well above the current carbon prices at the EU emissions

trading system). How did we choose the short- and long-run discount rates underlying

the Markov price? Weitzman’s (2001) survey led to discount rates declining from 4 per

cent for immediate future (1-5 years) to 3 per cent for near future (6-25 years), to 2 per

cent for medium future (26-75 years), to 1 per cent for distant future (76-300), and then

close to zero for far-distant future. Consistent with Weitzman and our 10-year length

of one decision-period, we use the short-term discount rate close to 3 per cent, and the

long-term rate below 1 per cent. This still leaves degrees of freedom in choosing the

two rates. We use this freedom to match the savings rate of 25 per cent and thus the

macroeconomic performance in the Norhaus (2007) case: we choose ρ and θ to maintain

the equilibrium utility discount factor at γ = 0.817 (2 per cent annual discount rate)

that keeps savings constant across the Markov equilibria considered. Moreover, since

the equilibrium utility discount rate remains at 2 per cent, the Nordhaus case is the

Pigouvian benchmark; using the 2 per cent rate to determine the present-value damages

implies Pigouvian taxes as proposed by Nordhaus. See now Table 3.

annual discount rate

short-term long-term equilibrium ID PF DF Carbon price

“Nordhaus” .02 .02 .02 7.61 2.44 .45 8.4

Markov .0235 .01 .02 7.89 3.69 .55 16.1

Markov .0255 .005 .02 8.05 5.76 .63 29.4

Markov .0271 .001 .02 8.19 19.63 .73 116.9

“Stern” .001 .001 .001 8.19 19.36 .95 152.4

Table 3: Disconnecting carbon pricing from equilibrium discounting. Parameter values

as in Table 2

The first row reproduces the Pigouvian case from Table 2 assuming consistent pref-

erences when the annual utility discount rate is set at 2 per cent: this row presents the

carbon price under the same assumptions as in Nordhaus (2007), but using our carbon cy-

cle model (which approximates his case very well, as discussed). Keeping the equilibrium

time-preference rate at 2, thus maintaining savings at the level proposed by Nordhaus

(reported also in Table 1 of the Introduction), we move to the Markov equilibrium by

departing the short- and long-term discount rates in first and second columns. We ob-

tain a radical increase in the carbon price as the long-term discounting decreases, while
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savings remain at the same level. The highest carbon tax, 116.9 EUR/tCO2, corresponds

to the case where the long-run discounting is as proposed by Stern (2006); this case also

best matches the Weitzman’s values. For reference, we report the Stern case where the

long-term discounting holds throughout, the carbon price takes value 152.4 EUR/tCO2,

and gross savings cover about 30 per cent of income. Thus, our third Markov equilibrium

closes considerably the gap between Stern and Nordhaus carbon prices, without having

unrealistic by-products for the macroeconomy.29

We can also experiment with damage sensitivity vis-a-vis the time-preference struc-

ture. Let ∆Y = 0.00144 stand for the low-damage case where a 3K temperature increase

leads to only 1.3 percent output loss. Let ∆Y = 0.003 plus ∆U = 0.0081 stand for a

high-damage case when intangible damages associated to a 3K temperature rise amount

to an equivalent of 7.3 per cent of consumption, so that total damages are equivalent to

10 per cent of consumption. The median damage is as before, and for the comparison we

choose the second Markov equilibrium where the long-term discount rate amounts to a

half per cent annually. Table 4 shows that the Markov equilibrium tax for low damages

are between the median and high damage tax of Nordhaus (i.e, Pigouvian). Both the

damage estimates and the time preference structure are equally important to determine

carbon prices.

Carbon Prices low damages median damages high damages

“Nordhaus” 4.0 8.4 31.0

Markov equilibrium 14.2 29.4 108.9

“Stern” 73.4 152.4 564.3

Table 4: Carbon prices [Euro/tonCO2] dependence on structure of time preferences and

damage estimates

3.6 Welfare and effi ciency

Our welfare concept is the multi-agent Pareto optimality. As in three periods, we consider

Planner-equivalence, and then if such a planner is representative (effi cient). For the

29The deviation between the Markov (thus Nordhaus) and Stern savings can be made extreme by

suffi ciently increasing the capital share of the output that gives the upper bound for the fraction of yt
saved; close to all income is saved under Stern preferences as this share approaches unity (Weitzman,

2007). However, with reasonable parameters such extreme savings do not occur, as in Table 3.
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infinite horizon, an allocation {ct, zt, kt}∞t=1 is Planner-equivalent if it maximizes welfare

of a (fictitious) Planner with objective function∑∞
t=1 α

′
tut

where {α′t}∞t=1 is some sequence of utility weights with bounded mass. Given the structure

of our equilibria with constant savings, we focus directly on geometric weights, γ =

α′t+1/α
′
t; we have already constructed such a geometric weight for the Markov equilibrium.

As in three periods, the Planner is representative (effi cient) if and only if the allocation

implies non-negative welfare weights. The condition for effi ciency turns out be simple

(proof in Appendix but see also Gerlagh and Liski, 2011):

Lemma 8 The Planner with γ is representative if and only if γ ≥ max{ρ, θ}.

If both short and long-term preference paramemeters were equal, say ρ (resp., θ), the

utility discount factor γ would simply be ρ (resp., θ). If time preferences are inconsistent,

θ 6= ρ, then the equilibrium utility discount factor is bounded by the two contrafactuals:

by straightforward substitution, we can see that for θ 6= ρ, the Markov-equilibrium

discount factor satisfies

min{ρ, θ} < γ∗ < max{ρ, θ} < 1.

The reasoning for this result is straightforward. The current generation cares more

for total future welfare, and thus saves more, than a planner who would have consistent

preferences with discount factor satisfying γ = ρ. Then, the current agent cares less, and

saves less, compared to a representative planner who would have consistent preferences

with γ = θ. Clearly, the equilibrium savings must be somewhere between the extremes.

Proposition 5 An equilibrium with utility discount factor γ (not necessarily γ∗) is

Planner-equivalent if and only if the Pigouvian carbon pricing rule in Lemma 7 holds.

Proof. Given utility discount factor γ, we can obtain the Planner’s allocation as the

one that follows in Markov equilibrium when ρ = θ = γ. The Markov equilibrium implies

the first-order conditions for capital investments, and these conditions are suffi cient for

effi cient savings in this economy. The remaining effi ciency condition is for emissions.

Effi ciency implies and is implied by the Pigouvian carbon price.

If we abstract from intangible climate change damages (∆u = 0), implementing Pigou-

vian carbon prices has a clear justification as it implements productive effi ciency: no con-

sumption sequence exists that yields a strictly higher discounted utility for market utility
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discount rate γ∗. Yet, productive effi ciency does not imply welfare effi ciency, because if

θ 6= ρ, then γ < max{θ, ρ} so that Lemma 8 is not satisfied.30

Proposition 6 If ρ 6= θ, the equilibrium with Pigouvian carbon prices is not Pareto

effi cient.

While the Pigouvian carbon price does not restore full effi ciency, it might be argued

that the productive ineffi ciency removed produces at least a Pareto improvement. How-

ever, not even this can be achieved. To show this, and to identify policies that improve

welfare, let us consider how future policies affect current welfare. Let preferences be

quasi-hyberbolic θ > ρ, and note that from the perspective of the current generation,

future savings and emission levels are optimal if they are consistent with the long-term

time preference θ, that is, if g = αθ and hγ=θ where hγ is defined in Lemma 7; then future

agents would behave as if they were consistent with present long-term preferences. Thus,

this artificial thought-experiment gives a benchmark against which we can test various

policy proposals affecting the current welfare through future policies.

Lemma 9 For θ > ρ and τ > t,

∂wt
∂gτ

> 0 iff gτ = g < αθ

∂wt
∂hτ

> 0 iff hτ = h < hθ.

Since the equilibrium policies satisfy the inequality conditions in the Lemma – sav-

ings are too low and emissions too high – any policy that manages to increase either

one or both of the future decision variables from their Markov level increases the current

welfare. It turns out that imposing the stand-alone Pigouvian tax principle implies a

correction in the wrong direction.

Proposition 7 Implementing Pigouvian carbon prices from period t onwards implies a

welfare loss for generation t vis-a-vis the Markov equilibrium.

Proof. By Lemma 4, the change to the Pigouvian carbon price does not affect policy

g; thus, we can focus on the effect of future carbon policies on current welfare wt. Let

ρ < γ < θ, and let climate change be a slow process such that τ θt > ft,z > τ γt ; see

Proposition 7. Imposing the Pigouvian carbon price will then decrease the future carbon

price, taking it further away from τ θt , decreasing current welfare as shown in Lemma

30Note that this conclusion does not require ∆u = 0.
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9. The same mechanism applies for other time preferences and/or fast climate change.

For ρ > γ > θ and slow climate change, or for ρ < γ < θ and fast climate change,

we have τ θt < ft,z < τ γt , and again implementing future Pigouvian carbon prices will

decrease current welfare. Similarly, for ρ > γ > θ and fast climate change we have

τ θt > ft,z > τ γt . Thus, imposing Pigouvian carbon prices on current policies must reduce

welfare compared to the unrestricted Markov welfare.

The remarkable feature of the above proposition is that a Pigouvian carbon price

policy strictly decreases welfare, not as a second-order effect, but as a first-order effect.

Lemma 9 suggests that we can look for welfare-improvements through self-enforcing

policy rules; there is surplus to be created by increasing the policy choices (g, h) for

all generations while maintaining their incentive constraints, coming from the threat

to switch back to Markov equilibrium where no rules regarding future behavior apply.

Consider a policy pair (ĝ, ĥ) that the current generation would like to propose for all

generations, including itself. From Lemma 9, generation t would like to propose for all

future generations effi cient decision rules gPE = θα and hPE = hθ but,31 achieving this

requires that these policies are followed also at t, which is ruled out by the current incen-

tive constraints: (gPE, hPE) does not maximize wt. But, also from Lemma 9, the current

generation is willing to give up part of its consumption, by increasing g and h, beyond

their Markov equilibrium level, anticipating that all subsequent decision-makers will fol-

low suit when facing the same decision. The best self-enforcing policy pair supported by

the Markov equilibrium is between the effi cient and the Markov policy:

Proposition 8 There exist a policy pair gPE > ĝ > g∗ and hPE > ĥ > h∗, such that

this policy rule maximizes welfare of the first generation, and no future generation can

benefit from switching back to the Markov equilibrium.

We have seen that the Markov equilibrium allows us to disconnect utility discounting

and carbon pricing. Proposition 8 implies that we can tighten the carbon policy further

(ĥ > h∗) while keeping savings at the Markov level (ĝ = g∗).32 Thereby, we can justify,

from the positive welfare point of view, carbon prices that are not only higher than the

Pigou tax but also higher than the Markov price, without increasing the equilibrium

31Lemma 8 states that the representative Planner must have a utility discount factor of θ or larger.

Here, γ = θ, and hθ equals the Pigouvian tax, ensuring that that the allocation is Planner-equivalent

(Proposition 5).
32The argument for the self-enforcing policies holds for both policy variables separately, so this one-

sided policy improvement is feasible.
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utility discount factor and savings. Recall that the discussion following Stern (2006)

on the appropriate level of the carbon price is centered around the choice of the social

discount factor. To justify the Stern’s level for carbon prices, one may invoke ethical

arguments or fundamental uncertainties (Weitzman, 2007). Our argument is completely

different. When the short and long-term time-preferences differ, the self-enforcing policies

can support stricter than Markov carbon policies, that close the gap to Stern even further,

ĥ > h∗. In our quantitative analysis below, we illustrate that the quantitative magnitude

of this policy is significant.

The model can also justify Stern through high equilibrium utility discount factors:

self-enforcing policies that target both savings and emissions imply simultaneously higher

equilibrium discount factors, ĝ/α > g∗/α, and lower emissions, ĥ > h∗. Obviously, this

maximizes the welfare potential of the policies considered, but can lead to savings rates

close to α, which we calibrated in our numerical model below to 0.306. Such savings

may be hard to justify, in particular if the capital share α is large, which is exactly

the common critique on Stern. We concur with the practical relevance of this criticism,

but note that the endogenous link between equilibrium discounting and welfare shows

that the Stern proposal is intelligible as an equilibrium outcome. We come back to the

numbers in the quantitative analysis.

4 Quantitative analysis

While the climate and savings policies can be obtained in closed form for a given state of

the economy, for the future climate-economy adjustment path we need to further specify

technologies, and make additional quantitative choices. In particular, we need a detailed

structure for the energy sector.

4.1 Production and energy

Consider a production function as in (29) but further specified to

yt = kαt [At(ly,t, et)]
1−αω(st)

At(ly,t, et) = min {Ay,tly,t, Ae,tet}

where the overall labor-energy composite At(ly,t, et) takes CES form with extremely low

elasticity of subsitution between labor in the final-good sector ly,t and energy et, i.e.,

we take it as Leontief. Productivities Ay,t and Ae,t are calibrated and thus exogenous.
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The Leontief assumption avoids unrealistically deep immediate cuts of emissions; see also

Hassler, Krusell and Olovsson (2011).33 Energy et also uses labor: the core allocation

problem on which we add detail here is how to allocate a given total labor lt at time

t between final output ly,t, fossil-fuel energy, lf,t, and non-carbon energy, ln,t. Thus,

importantly, the energy and climate policy steers the labor allocation (ly,t, lf,t, ln,t)t≥0

and therefore the quantities of fossil-fuel, ef,t, and non-carbon energy, en,t, summing up

to the total energy input:

et = ef,t + en,t.

We assume that ef,t can be produced with constant-returns to scale technology using

labor lf,t and the fossil-fuel zt,

ef,t = min{Af,tlf,t, Btzt},

where Af,t and Bt describe productivities. The fuel resource is not a fixed factor and

commands no resource rent; by this assumption, our focus is on the “coal phase”, as

coined by Golosov et al. (2011), where the fuel resource relevant for long-term climate

policies is in principle unlimited. In contrast, the non-carbon production is land-intensive

and subject to diminishing returns and land rents:

en,t =
ϕ+ 1

ϕ
(An,tln,t)

ϕ
ϕ+1 ,

where ϕ > 0 describes the elasticity of supply from this sector, given the labor cost.

Recall that savings and climate policies, characterized by (g, h), can be found separately

from the labor allocation. Then, we can solve (ly,t, lf,t, ln,t, wt), where wt is wage at time

t, as the competetive equilibrium at each t, given output price pt = u′((1 − g)yt) and

the carbon price imposed on per unit of carbon released in production of ef,t. Note that

this two-step procedure for each t works because the functional forms for utility (log)

and capital in production (power function), pre-determine the savings share of output

(g) and climate policy (through h) as a constant carbon price per income; the resulting

temporal prices for output and emissions allow then the calculation of the labor market

outcome separately for each period.34

33We have performed the quantitative analysis also for a Cobb-Douglas form for At(ly,t, et). These

results are available on request. See also the next footnote.
34It is now clear that our climate policy is essentially a labor market policy. The Leontief between the

final-good and energy labor in At(ly,t, et) prevents unrealistic short-term reallocations of labor following

emissions penalties. Note that, in principle, the Leontief does not rule out growth in the long run: the

economy can be scaled up without limits with labor, if h = 0. Thus, it is the land-intensive carbon-free

production that prevents the scale-up in the presence of carbon policies.
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We provide the equilibrium conditions for the labor-market allocation in the Appen-

dix.

Our calibration progresses as follows.35 When there is no carbon policy, h = 0, the

labor market allocation can be solved in closed form; thus, we can invert the model

to map from a quantities path (l, y, ef , en)t≥0 to productivities (Ay, Ae, Af , An)t≥0.36 We

match the business-as-usual (BAU) quantities (y, ef , en)t≥0 with the A1F1 SRES scenario

from the IPCC (2000). Population follows a logistic growth curve with parameters given

by World Bank forecasts. Population in 2010 is set at 6.9 [billion], while the maximum

population growth rate is chosen such that in 2010 the effective population growth rate

per decade equals 0.12 [/decade]. The maximum expected population (reached at about

2200) is set at 11 [billion]. For the BAU calibration, we also need the following values: the

price of energy at 2010, and the World Gross value-added 2010.37 We calibrate to 25 per

cent gross savings in all scenarios. Under consistent preferences with 2 per cent annual

pure time discount, the capital share, under 25 per cent savings, becomes α = g/ρ = .306.

For the Markov equilibrium, we take ρ = .7724 and θ = .9511, corresponding to 2.55

and .5 per cent annual discounting, respectively. These choices preserve g = .25. From

the BAU calibration we proceed to policy experiments: Markov, Pigouvian, and more

advanced policies. We turn next to these results.

4.2 Climate-economy adjustment paths

We use now the full model for four scenarios. The simulations are run through the years

2010-3000; the model is initiated at the period labeled ’2010’, representing 2006-2015.

We consider the following scenarios. First, in the business as usual (BAU) scenario,

we assume no climate policy and set h = 0, while savings g are at the Markov equilibrium

level. Second, in the Markov equilibrium generations choose their equilibrium savings

and climate policies at each income level as we have described in our theory (Section

3.3). Third, in the Pigouvian equilibrium, we impose the Pigouvian tax as detailed in

Section 3.4. For interpretation, it is useful to notice that because, under our assumptions,

35We calibrate the model using Excel. We have available one file that pulls together all parameters

and the calibration procedure for the carbon cycle as well as for the economic model. The Excel file

also contains model simulations. Additionally, we run the model in GAMS for more elaborate analysis.

Both files are available on request.
36We express all energy in carbon units; to obtain this, we set Bt = 1 and employ three distinct energy

productivities (Ae, Af , An).
37These values, as well as (l, y, ef , en)t≥0 and (Ay, Ae, Af , An)t≥0, are in the Excel file (sheet "calibra-

tion economics").
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savings and carbon policies are separable, moving between scenarios one to three does not

change savings; only the carbon policy is affected. Moreover, as we calibrate the model

to match savings under consistent preferences with 2 per cent annual discounting, the

Pigouvian outcome is observationally equivalent to the Nordhaus DICE 2007 scenario.

Finally, we consider an "Advanced policy" scenario where the carbon prices are chosen

to maximize each generation’s welfare in a self-enforcing manner: as in Proposition 8

we find the highest carbon tax, characterized by constant ĥ, such that each generation

has incentives to follow this policy rather than switching the continuation path to the

Markov equilibrium. We consider the advanced policy only for the carbon tax and not

for the savings.38

The first Figure shows the carbon prices for the three policy scenarios. The Pigouvian

tax rule has the lowest carbon prices, from 8.4 EUR/tCO2 in 2010, increasing with output

to 43 EUR/tCO2 in 2100.39 The Markov equilibrium implements a considerably higher

carbon price, rising from 29.4 to 105 EUR/tCO2 during the same time period. Finally,

the advanced policy further increases the carbon price to 33 EUR/tCO2 in 2010, arriving

at 106 EUR/tCO2 in 2100. Between the scenarios, welfare is, of course, the lowest for

all generations in the BAU scenario and increases as we move to the Pigouvian scenario,

and then to the Markov equilibrium, and, finally, the highest welfare is reached by all

generations in the Advanced Policy scenario.

38There are two reasons for this focus. First, describing the self-enforcing policies in the two dimensions

is computationally challenging. Second, such policies imply high savings and thus violate our basic

premise that the shorter-term decisions should be consistent with actual historical behavior.
39Multiply the values by factor 4.7 to arrive at the USD/tC values.
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Figure 1. Carbon prices over 2010-2100

The second Figure shows the emissions associated with these scenarios. The key take-

away from this figure is that Pigouvian taxes cannot prevent emissions from increasing

substantially beyond current levels, for the full two coming centuries. In contrast, the

carbon prices in the Markov equilibrium trigger a complete transition towards carbon-free

energy sources by the end of 2100, and the Advanced Policy has the most drastic impli-

cations for energy supply and use. The increasing sequence of carbon prices translates

into lower cumulative emissions over the period 2006-2105. They range from 6588 GtCO2

in BAU, via 5276 GtCO2 for the Pigouvian scenario, and 1768 GtCO2 for the Markov

scenario, to 1413 GtCO2 for the Advanced Policy scenario. We note that while the Pigou

scenario matches the Nordhaus DICE 2007 emissions well, for the Markov and Advanced

scenarios the model predicts a change in the energy system that is unrealistically fast,

given that the existing capital structure pre-determines energy infrastructure options in
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the near future.40

Figure 2. CO2 emissions 2000-2200

The third Figure shows the temperature rise associated with these scenarios. Due

to the extreme persistence of climate, we show the temperatures up to the year 3000.

There is large uncertainty about the climate sensitivity (parameter π); we use the best

scientific estimates, implying that taking no policy action can lead to temperatures rising

above 10 Kelvin, changing earth into an environment that hardly resembles anything

humans have encountered in history. Applying the Pigouvian carbon price rule curbs the

temperature rise to a maximum temperature rise of 3.6 K, reached around 2220. Even

after thousand years, global temperatures are hardly below 3K.41 The Markov equilibrium

where emissions over the coming century are cut more than 70 per cent vis-a-vis the BAU

scenario ensures that the temperature rise remains below 2 K most of the time, with a

peak at 2.1 K. Finally the Advanced Policy scenario keeps the temperature slightly lower,

but even in this drastic scenario, for the coming thousand years, temperatures will remain

40Because of the added complexity, only a few integrated assessment models describe a vintage-based

capital structure (e.g., van der Zwaan et al. 2002).
41Such a temperature path could already lead to the collapse of the Greenland ice sheet. See Krieglera

et al. (2009), and Alley et al. (2010) , and the following quote in the latter: “The evidence suggests

nearly total ice-sheet loss may result from warming of [..] perhaps as little as 2◦C or more than 7◦C.”
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above levels seen for the past 400,000 years.

Figure 3. Temperature rise 2000-3000

The fourth Figure shows the effect of the policies on consumption per capita. The

Pigouvian carbon prices decrease consumption at about 0.1 percentage, relative to the

Business as Usual for the coming century, and prevents a downturn at the second half of

the millennium when temperature rises would cause severe damage. The Markov policy

decreases consumption at about one percentage in addition to the Pigouvian tax scenario,

for the coming century. In return, consumption increases from 2150 onwards, by up to 3

per cent between 2200 and 2300. The advanced policy takes it one step further, but the

difference with the Markov equilibrium is small.

We emphasize that the results describing BAU and the Pigouvian scenarios are consis-

tent with the experiences from numerous integrated assessment models for the medium-

term future.42 However, not all integrated climate-economy assessment models feature

the same persistence of climate change, implying that the far-distant impacts are rela-

tively pronounced in our model. This seems justified because the main consequences of

climate policies of the 21st century will be felt beyond 2200, and because our parameters

42Running the baseline DICE 2007 using our .02 discount rate throughout, leads to a climate-economy

outcome that is very close our Pigouvian scenario during the coming two centuries, not only with respect

to the initial tax but also to the time paths described in this section.
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are based on rigorous scientific insights.43

Figure 4. Consumption per capita 2000-3000

5 Discussion

In an editorial comment Nordhaus (1997) discusses a benchmark climate change policy,

comparable to our Pigouvian tax rule, and its various alternatives giving more weight

to the concerns for climate change. The first alternative applies a lower than market

discount rate uniformly to both capital and climate investments. The second alternative

uses differential discounting: a market discount rate is used for capital, while a lower

discount rate is used for climate investments; the approach is based on Hasselmann et

al. (1997). The third approach sets a longer-term climate target, based on the variables

believed to matter most for ultimate climate change damages. The target could be a limit

on the global temperature rise by the year 2500. The fourth approach sets intermediate

climate change targets, e.g., for emissions or atmospheric CO2 concentrations. In his

assessment of the Pigouvian tax rule and the alternative policies, Nordhaus finds that

the Pigouvian tax rule outperforms all alternatives. That is, all alternatives result in

strict welfare losses compared to the Pigouvian approach. The long-term climate target

has the lowest welfare losses given the gains from climate stabilization; using intermediate

climate variables as targets comes next; differential discounting comes third; and using

lower discount rates for both capital and climate change policy is the worst policy.

43It is not possible to calculate the same scenarios in other integrated assessment models, as they are

not well suited to the analysis of Markov type of equilibria.
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While our results are certainly supportive of setting a price on emissions, our as-

sessment of the policies is markedly different. Our Proposition 8 establishes that when

intergenerational preferences are not time-consistent, the welfare potential is maximized

by a self-enforcing commitment to a lower than shorter-term market discount rate for

both capital investments and climate change policy. If self-enforcing policies are deemed

unrealistic, the Markov equilibrium is a simple alternative. In contrast with the Pigou-

vian approach, it sets differential discount rates for climate and private capital; the

Markov policies perform hugely better that the Pigouvian policies applying a uniform

(market-return) discounting for all assets.44

To illustrate the gains from differential discounting (in the Markov equilibrium) when

compared to the uniform discounting at the level of capital returns (in the Pigouvian

equilibrium), we construct a “wrinkle experiment”, following Norhaus (2007). In his

criticism on Stern, Nordhaus (2007) proposes the following thought experiment. Consider

a project that can yield a small but perpetual gain in a distant future, such as 0.1 per

cent gain in income 200 years from now onwards. How much the current decision-maker

is willing to give up to achieve such a future gain? If we discount future gains at 0.1 per

cent per year, the net present value of the project amounts to 80 per cent of one year of

income (Nordhaus 2007). We certainly do not want to give up so much for such a small

future gain, even if perpetual. Our wrinkle experiment compares the Pigou policy with

the Markov equilibrium scenario: this project brings the peak global average warming

from 3.3 K to below 2.1 K, and a large part of this gap (0.9K) is almost perpetual. The

question we must ask is whether the current generation is willing to give up 1-2 per cent

of its income to implement that project. Under our parameter choices, the answer is

affi rmative to this project decision. The associated "consumption wrinkle" is depicted in

Figure 5. A subsequent project, in the same Figure, compares the Advanced Policy with

the Markov scenario, which would shave off another 0.1K from global warming, from

2200 onwards, perpetually. The costs of this challenging policy would be an additional

44The climate target policies suffer from another type of problem: they are infeasible, as envisioned

by Nordhaus, without a supporting intertemporal global commitment device. Without commitment,

inconsistent preferences can lead to the following scenario. Policies based on climate targets tend to

defer the costs of meeting these targets to the future. But, when the costs cannot be delayed any longer,

as then the target becomes infeasible, the generation that has to decide at that time will relax the target

because the cost-benefit trade-offs change over time. As the current generation understands that future

generations will not keep up with the targets set by the present, they will tend to contribute excessively

themselves to reaching the target if they believe this help future generations to keep the target, or they

will relax the target immediately if they believe that future generations cannot uphold the target.
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0.1 per cent of our income for the coming century.45 Under our parameter choices, the

answer is again affi rmative to this far-reaching project as well.

The parameters may err on both sides. We may have considered too low discount rates

for the long-term structure of time preferences. On the other hand, we may underestimate

the damages of climate change severely; a constant damage parameter ∆y over centuries

is a strong assumption. Despite the scope for errors, the conclusions from our wrinkle

experiment seem robust: the experiment favors stricter climate policies under the Markov

equilibrium over the Pigouvian carbon price with a large margin.

The most important consequences of climate change might not be related to the

loss of income as measured through industrial activities and services (market impacts

influencing prices), but future generations may measure their loss in terms of non-market

impacts including losses of large ecosystems such as rain-forests and coral reefs that

may collapse when they could not adapt quickly enough to the rapidly changing global

environment. Though global warming receives most attention, ocean acidification is

increasingly considered a complementary consequence of anthropogenic CO2 emissions,

and a major threat to marine biodiversity (Orr et al. 2005). As market-based effects are

easier to evaluate, the set of available estimates tends to be biased towards such impacts.

Figure 5. Changes in consumption between scenarios, 2000-3000

To make progress in policy experiments, we are in need of two sources of informa-

tion. First, there should be a more structured approach to estimating climate impacts,

45To calculate the costs of the climate policy on its own merits, we constructed an auxiliary scenario

where we fixed the savings policy to the BAU levels, and determined the optimal carbon tax policy h,

that would be self-enforcing.
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including non-market damages. Second, given the assessment of possible consequences,

we should assess the willingness of people to give up part of their income to prevent part

of these consequences from happening.

6 Concluding remarks

September 2011, the U.S. Environmental Protection Agency (EPA) sponsored a work-

shop to seek advice on how the benefits and costs of regulations should be discounted for

projects with long horizons; that is, for projects that affect future generations. The EPA

invited 12 academic economists to address the following overall question: “What princi-

ples should be used to determine the rates at which to discount the costs and benefits

of regulatory programs when costs and benefits extend over very long horizons?”In the

background document, the EPA prepared the panelists for the question as follows: “So-

cial discounting" in the context of policies with very long time horizons involving multiple

generations, such as those addressing climate change, is complicated by at least three fac-

tors: (1) the "investment horizon" is significantly longer than what is reflected in observed

interest rates that are used to guide private discounting decisions; (2) future generations

without a voice in the current policy process are affected; and (3) compared to shorter

time horizons, intergenerational investments involve greater uncertainty. Understanding

these issues and developing methodologies to address them is of great importance given

the potentially large impact they have on estimates of the total benefits of policies that

impact multiple generations.”

In this paper, we have developed a methodology for addressing the over-arching ques-

tion posed above, and also provided a quantitative evaluation of optimal carbon prices

using the methods developed. The analysis builds on two premises that seem consistent

with practical program evaluation principles: (i) shorter-term decisions should respect

the revealed attitudes towards choices over time; and (ii) the far-distant future should be

treated differently and discounted with a lower rate. The climate-change problem stipu-

lates a general-equilibrium approach where the returns on assets become dependent on

the policies adopted. In this setting, distortions cannot be avoided: even when climate

externalities are internalized, i.e., when policy makers fully take into account the inflicted

impacts on future generations, the consumption trade-offs over time of the future decision

makers are incongruent with those of the current generation. These distortions imply that

the capital returns do not reflect how the future damages from climate impacts should

be discounted; when time discounting declines with time, the current decision makers
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value investments in the climate asset more that indicated by the capital returns. As a

result, the current optimal price on carbon emissions exceeds the Pigouvian level. When

welfare is measured such that the original preferences of the generations are respected

(no dictatorial objectives), imposing the Pigouvian rule decreases welfare for all gener-

ations. We have quantitatively demonstrated the significance of the difference between

equilibrium and Pigouvian policies in all quantitate dimensions of the climate problem

using state of the art approaches to the economy as well as to the climate system.

Appendix

Lemma 4

The proof by is by induction. Assume that (37) and (38) hold for all future periods

t + 1, t + 2, .... , and that the lemma holds for t + 2. We can thus construct the value

function for the next period, as

Wt+1(kt+1, st+1) = ut+1 + θWt+2(kt+2, st+2).

Substitution of the investment decision at time t+ 1, kt+2 = gyt+1 and emissions zt+1 =

z∗t+1 , gives

Wt+1(kt+1, st+1) = [α ln(kt+1) + ...+ ln(ω(st+1))]−

∆uDt+1 + θξ[α ln(kt+1) + ...+ ln(ω(st+1))] + θΩ(st+2)

where “...”refer to constants, such as ln(1− g) that do not depend on the state variables

kt+1 and st+1. Collecting the coeffi cients in front of ln(kt+1) yields the part of Vt+1(kt+1)

depending kt+1 with the recursive determination of ξ,

ξ = α(1 + θξ).

so that ξ = α
1−αθ follows.

Collecting the terms with st+1 yields Ω(st+1) through

Ω(st+1) = ln(ω(st+1))(1 + θξ)−∆uDt+1 + θΩ(st+2).

where zt+1 = z∗t+1 appearing in st+2 = (z1, ...zt, zt+1) is independent of kt+1 and st+1

(by Lemma 6 that holds by the induction hypothesis) so that we only need to consider
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the values for z1, ..., zt when evaluating Ω(st+1). The values for ζτ can be calculated by

collecting the terms in which zt+1−τ appear. Recall that ln(ω(st+1)) = −∆yDt+1 so that

ζτ = ((1 + θξ)∆y + ∆u)
∑

(i,j)
aibjπεj

(1− δi)τ − (1− εj)τ
εj − δi

+ θζτ+1

Substitution of the recursive formula, for all subsequent τ , gives

ζτ = (
∆y

1− αθ + ∆u)
∑

(i,j)

∑∞

t=τ
aibjπεjθ

t−τ (1− δi)t − (1− εj)t
εj − δi

To derive the value of ζ1, we consider∑∞

t=1
θt−1 (1− δi)t − (1− εj)t

εj − δi

=

∑∞
t=1[θ(1− δi)]t −

∑∞
t=1[θ(1− εj)]t

θ(εj − δi)

=

θ(1−δi)
1−θ(1−δi) −

θ(1−εj)
1−θ(1−εj)

θ(εj − δi)

=
1

[1− θ(1− δi)][1− θ(1− εj)]

Q.E.D.

Lemma 6

The first-order conditions for fossil-fuel use zt, and the labor allocations over the final

goods ly,t and the energy sectors le,t give:

u′t
∂yt
∂zt

= ρ
∂Ωt+1

∂st+1

∂st+1

∂zt
⇒ 1

1− g
1

At

∂At
∂et

∂Et
∂zt

= ρζ1 (45)

∂At
∂ly,t

=
∂At
∂et

∂Et
∂le,t

(46)

The second part of the Lemma follows immediately from (45):

∂yt
∂zt

= ft,z = ρζ1(1− g)yt.

The second equation equals the productivity of labor in the final good sector with the

indirect productivity through energy production. We have thus four equations, energy

production (30), labour market clearance (31), and the above two first-order conditions,

that jointly determine four variables: zt, ly,t, le,t, et, only dependent on technology at time

t through At(ly,t, et) and Et(zt, le,t). Thus, zt = z∗t can be determined independent of the

state variables kt and st.
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Lemma 7

The result can be proved by repeating the steps in the proof of Lemma 4 with ρ = θ = γ,

to obtain the marginal damage cost of emissions; this identifies the Pigouvian tax. We

omit this repetition but, instead, find the Pigouvian pricing from Lemma 6 just by

imposing ρ = θ = γ. Note that Lemma 7 reports the tax for any given g and γ. Because

the savings and climate policies are separable (Lemma 4), the expression for the Pigouvian

tax holds whether g and γ correspond to the equilibrium values or not.

Lemma 8

This proof follows Gerlagh and Liski (2011). When the allocation maximizes the objective

W (·) =
∑∞

t=1
αtwt

with non-negative welfare weights αt having a bounded mass
∑∞

t=1 αt < ∞, then the
allocation is Pareto effi cient and the welfare aggregator W (·) is the objective of a repre-
sentative Planner.

The lemma considers allocations represented through geometric utility weights α′t =

γt−1. If γ < ρ or γ < θ one cannot construct a sequence of non-negative welfare weights αt
consistent with a Planner maximizing under the sequence of utility weights α′t. Suppose

the contrary, that welfare weights αt ≥ 0 consistent with α′t exist. Then, using the

definition of welfare, we see that for some τ > t, the relationship between the two is

α′1 = α1 and α′τ =
∑τ

t=1 αtρθ
τ−t−1 for τ > 1. Expanding the latter gives

α′τ = α1ρθ
τ−2 + α2ρθ

τ−3 + ...+ ατ−1ρ+ ατ . (47)

If γ < θ and α1 > 0, we see that the equation cannot hold with ατ ≥ 0 for suffi ciently

large τ : α′τ − α1ρθ
τ−2 < 0 for some finite τ > 0.

If γ < ρ, include only the last two terms on the right in (47) to obtain

α′τ+1 ≥ ρατ + ατ+1.

Substitute α′τ+1 = γα′τ ,

γα′τ − ρατ ≥ ατ+1.

Since γ < ρ, this cannot hold with ατ+1 ≥ 0 for any τ .

Consider now γ ≥ max{ρ, θ}. We show that now one can construct the non-negative
welfare weights. We construct an algorithm for finding the weights. Let α̃1 = {α1

τ}τ≥1,
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α̃2 = {α2
τ}τ≥2, and so on. Define

α1
τ = γτ−1, τ ≥ 1

α2
τ = α1

τ − α1
1θ
τ−t−1, τ ≥ 2

...

αt+1
τ = αtτ − αttθτ−t−1, τ ≥ t.

The value of αtτ measures the weight remaining for generation τ after all altruistic weights

of generations 1 to t− 1 have been subtracted. Note that the equilibrium implies utility

weights α̃1, and {αtt}t≥1 is the sequence of welfare weights consistent with α̃1. The main

intermediate result that we need, in order to prove that the sequence of welfare weights

{αtt}t≥1 is non-negative, is that for all τ ≥ t :

αtτ+1

αtτ
> max{ρ, θ}. (48)

By construction, this condition is satisfied for t = 1. It implies that next sequence α̃2,

induced by the algorithm, is non-negative, as

α2
τ = γτ−1 − θτ−t−1 > α1

τ{(max{ρ, θ})τ−1 − ρθτ−t−1} > 0, τ ≥ 2.

By induction, if the condition holds for α̃t, the sequence α̃t+1 is non-negative:

αt+1
τ > αtτ{(max{ρ, θ})τ−t − ρθτ−t−1} > 0, τ ≥ t.

Thus, we are done if we can show that condition (48) holds. Notice that

αt+1
τ+1 = αtτ+1 − αttρθτ−t > max{ρ, θ}αtτ − αttρθτ−t ≥ θ{αtτ − αttρθτ−t−1} = θ{αt+1

τ }.

If θ > ρ, this proves that αt+1
τ+1 > θ{αt+1

τ } > ρ{αt+1
τ }. On the other hand, if θ < ρ, we

have

αt+1
τ+1 = αtτ+1 − αttρθτ−t > max{ρ, θ}αtτ − αttρθτ−t ≥ ρ{αtτ − αttρθτ−t−1} = ρ{αt+1

τ },

which completes the proof.

Lemma 9

Consider a policy path (gt, zt)t given. We then look at variations in policies at time

τ . We can apply the same analysis as for the proof of Lemma 4 and conclude that the

lemma still holds. The only modification of the lemma is that we need to understand

that the parameter Ãt depends on the future policies. From the proof of Lemma 4, we

also recall that uτ + θWτ+1(kτ+1, sτ+1) is concave in both kτ+1 and zτ+1, which implies

that uτ +θWτ+1(kτ+1, sτ+1) is increasing in gτ iff gτ < αθ, and increasing in zτ iff zτ < zθτ .
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Proposition 4

We want to know the sign of ft,z − τPigout . For this we divide the difference by ∆βε, and

consider

1

ε− β [
ρ(1− β)

1− θ(1− β)
− ρ(1− ε)

1− θ(1− ε) −
γ(1− β)

1− γ(1− β)
+

γ(1− ε)
1− γ(1− ε) ].

For β = e = 0, the second term degenerates as it becomes zero. For β 6= ε very small,

we can then apply l’Hopital’s rule, and approximate the term by looking at the first

derivatives for β and ε evaluated at β = ε = 0:

1

ε− β [
ρ(ε− β)

(1− θ)2
− γ(ε− β)

(1− γ)2
]

=
ρ

(1− θ)2
− γ

(1− γ)2

This term is easily shown to be strictly negative. We substitute γ = ρ
1−α(θ−ρ)

(and

1− γ = 1−αθ−(1−α)ρ
1−α(θ−ρ)

) into this equation, divide by ρ, and get

1

(1− θ)2
− (1− α(θ − ρ))

(1− αθ − (1− α)ρ)2

As the numerator of the second term is smaller then 1 iffθ > ρ, and 1−αθ−(1−α)ρ > 1−θ
iff θ > ρ, so that the denominator is larger for the second term, it follows immediately

that the sign is positive iff θ > ρ. Using the same procedure for β and ε close to one, we

find from l’Hopital’s rule
1

ε− β (ε− β)(ρ− γ) = ρ− γ

and we immediately see that the gap is positive iff ρ > γ, that is, iff ρ > θ.

Equilibrium labor market allocation in Section 4

This Appendix details the labor market allocation for the functional forms introduced in

Section 4; this allocation is then numerically solved to obtain the overall climate-economy

adjustment path in Section 4.2. As explained in the text, the allocation can be solved

period-by-period taking the (i) productivity parameters, (ii) total labor, (iii) savings g,

and (iv) carbon policies h = ρζ1 as given. Items (i)-(ii) change over time, implying

reallocations of labor. But these reallocations satisfy equations (49)-(52) below. We

drop the time subscript in the variables.
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1. Consumers choose the fraction g of output y that is available for consumption. We

normalize prices for the final good to equalize marginal utility, so that factor prices

can be interpreted as marginal welfare per factor endowment:

p =
1

c
=

1

(1− g)y
.

2. Final-good producers of y take capital k, wages w, and the prices of energy q and

output p as given. Since y = kα[min {Ayly, Aee}]1−αω(s), factor compensation for

labour and energy together receives a share (1− α) of the value of output py:

wly + qe = (1− α)py

where e = ef + en.

3. Fossil-fuel energy production combines labor and fuels, with technology ef,t =

min{Af,tlf,t, Btzt}. Fossil fuel use and labour employed, z, lf ≥ 0, are strictly

positive if q covers the factor payments, including the carbon price ρζ1[
q −

(
w

Af
+
ρζ1

B

)]
× lf ≤ 0.

The zero profit condition for fossil fuel energy allocates the value of fossil fuel energy

to labour and emission permits; using the production identity we can express it in

terms of labour employed.

qef = wlf + ρζ1z = (w +
ρζ1Af
B

)lf

4. Carbon-free energy inverse supply is given by the first-order condition

q = w
∂ln
∂en

=
wt

(An)
ϕ

ϕ+1

(ln)
1

ϕ+1 .

The value share of labour employed in the carbon-free energy sector equals ϕ/(1 +

ϕ), so that the rent value is expressed in labour employed:

qen = (1 +
1

ϕ
)wln

We obtain four equations in four unknowns ly, lf , ln, w:

Ayly = Ae(Af lf +
ϕ+ 1

ϕ
(Anln)

ϕ
ϕ+1 ) (49)

wl +
ρζ1Af
B

lf +
1

ϕ
wln =

1− α
1− g (50)

w

Af
+
ρζ1

B
≥ w

(An)
ϕ

ϕ+1

(ln)
1

ϕ+1 ⊥ lf ≥ 0 (51)

ly + lf + ln = l (52)
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Equation (49) follows since, for strictly positive input prices, At(·) = min {Ayly, Aee} ⇒
Ayly = Aee. Equation (50) allocates the value of output that is not attributed to capital

(the right-hand side) to the labour, carbon emissions, and land rent for the non-carbon

energy (where we latter two terms are expressed in labour units). Equation (51) compares

the production costs for fossil fuel energy with non-carbon energy, and the last equation

is the labor market clearing equation. Note that the solution depends on the state of the

economy only through total labor l and productivities Ay, Ae, Af , An.

In the absence of a carbon policy, ζ1 = 0, we can solve the allocation in closed-form:

ln,t =
Aϕn,t

Aϕ+1
f,t

(53)

wt =
1− α
1− g

ϕ

ϕlt + ln,t
(54)

ly,t =
Ae,t

Ay,t + Ae,tAf,t
[Af,t(lt − ln,t) +

ϕ+ 1

ϕ
(An,tln,t)

ϕ
ϕ+1 ] (55)

lf,t = lt − ly,t − ln,t (56)

Here we include the time subsripts to emphasize the drivers of the solution. This business-

as-usual allocation is used to calibrate the productivities as explained in the text.

Calibration

In this section, we pull together all carbon cycle and economic parameters used in the

quantitative assessment. We provide also, on request, two independent program files

(GAMS and Excel) that contain the parameters and can be used for policy experiments.

Calibration: Climate parameters

We take data from Houghton (2003) and Boden et al. (2011) for carbon emissions in

1751—2008. We choose a 3-box representation of the global biogeochemical cycles; the

first box represents the atmosphere plus the upper ocean layer, the second box represents

the biomass, while the third box represents the deep ocean. The boxes contain physi-

cal carbon stocks measured in [TtCO2]. We calibrate the model to minimize the error

between the atmospheric concentration prediction from the 3-box model and the Mauna

Loa observations, while maintaining CO2 stocks in the various boxes and flows between

the boxes consistent with scientific evidence as reported in Fig 7.3 from the IPCC fourth

assessment report fromWorking Group I (Solomon et. al. 2007). There are 4 parameters
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we calibrate: (1) the CO2 absorption capacity of the "atmosphere plus upper ocean",

(2) the CO2 absorption capacity of the biomass box relative to the atmosphere, while we

fix the relative size of the deep ocean box at 4 times the atmophere, based on the IPCC

special report on CCS, Fig 6.3 (Caldeira and Akai, 2005). We furthermore calibrate (3)

the speed of CO2 exchange between the atmosphere and biomass and (4) between the

atmosphere and the deep ocean. Subsequently, we transform this annual 3-box model

into a decadal model adjusting the exchange rates within a period between the boxes

and the shares of emissions that enter the boxes within the period of emissions. For the

mathematical representation of the carbon cycle used in the climate-economy model, we

linearly transform the physical decadal model into a fully equivalent model that is math-

ematically more convenient, but where the boxes lose their precise physical meaning: box

0 measures the amount of atmospheric carbon that never depreciates; box 1 contains the

atmospheric carbon with a depreciation of about 9 per cent in a decade; while carbon

in box 2 depreciates half per decade.46 About 20 per cent of emissions enter either the

upper ocean layer, biomass, or the deep ocean within the period of emissions. In the

reduced-form model, they do not enter the atmospheric carbon stock, so that the shares

ai sum to 0.8. Our procedure provides an explicit mapping between the physical carbon

cycle and the reduced-form model for atmospheric carbon with varying deprecation rates;

the Excel file available on request contains these steps and allows easy experimentation

with the model parameters. The resulting boxes, their emission shares, and depreciation

factors are:

St=2005 = (.309, .265, .236)

a = (.166, .205, .429)

δ = (0, .088, .493).

These coeffi cients are used to calculate the stock dynamics as given by (34) when

the path of future emissions is given by the economy model. To transform stocks into

damages as given by (35), we assume a 1-box damage model and choose the parameters

as follows:

b = 1, ε = .183, π = 4.1

We thus have one box (b = 1). We inteprete Dt in (35) as the Global Mean Temperature

(GMT ) squared (GMTt =
√
Dt); ε = .183 in the decadal model implies a temperature

46From a technical perspective, the decay rates in the final reduced-form model describe the eigenvalues

of the original model.
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adjustment speed of 2 per cent per year. Choice π = 4.1 [K2/GtCO2] implies a climate

sensitivity of 3 Kelvin per 2.2TtCO2. These choices are within the ranges of scientific

evidence (Solomon et al. 2007).

We seek to calibrate the damage parameters to match the case presented in Nordhaus

(2007) as a benchmark. Assuming damages equivalent to 2.7 per cent of output at a

temperature rise of 3 Kelvin, as in Nordhaus (2001), we obtain ∆y = 0.003; we set

∆u = 0, unless otherwise stated.

Calibration: Economic parameters

In Section 4 (see also Appendix on the labor allocation solution) we explained the

business-as-usual calibration, that is, the mapping from quantities path (l, y, ef , en)t≥0 to

productivities (Ay, Ae, Af , An)t≥0. Thus, we need to make choices that drive the quanti-

ties (l, y, ef , en)t≥0. Population is assumed to follow a logistic growth curve:

lt+1 = [1 + γL(1− lt
lmax

)]lt

with parameters given by the World Bank forecasts. Population in 2010 (L) is set at

6.9 [billion], while the maximum population growth rate γL is chosen such that in 2010

the effective population growth rate per decade equals 0.12 [/decade]. The maximum

expected population (reached at about 2200) is set at 11 [billion].

Consider then the determinants of initial output yt=2010. We take Gross Global Prod-

uct as 600 Trillion Euro [Teuro] for the first decade, 2006-2015 (World Bank, using PPP).

Fossil-fuel energy input ef , measured in CO2, is .318 [TtCO2] for 2006-2015 (SRES IPCC

2000); we set en at 10 per cent of ef . These are the raw quantities entering production

function at t = 2010; now, we use the model structure to calibrate the remaining vari-

ables at t = 2010. There is only one energy sector parameter to be set: the elasticity of

carbon-free supply; see Section 4. We set this parameter to ϕ = 2.

We calibrate the preference parameters to yield 25 per cent savings (g = .25), which

together with u(c) = ln(c) and yt=2010 = 600, gives the price of output as p = 1/((1 −
g)600). The relative price of energy is taken to be q/p = 50 [euro/tCO2]. In Appendix

for the labor allocation, we derived the labor allocation as a function of productivities.

We have now information on the endogenous variables: the energy outputs (en,ef), total

output y and the energy price q/p, so we can solve both the labor allocation (ly, lf , ln)

and the productivities (Ay, Ae, Af , An) at t = 2010.

To progress to the next decade t = 2020, we take capital k given by savings, keep

the energy price q/p = 50 [euro/tCO2], and match y and (en,ef) to the A1F1 SRES
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scenario from the IPCC (2000). This way the calibration procedure for productivities

can be repeated for all future decades.

Finally, capital elasticity α follows from the assumed time-preference structure ρ and

θ, and observed historic gross savings g.. As a base-case, we consider net savings of 25%

(g = .25), and a 2 per cent annual pure rate of time preference (ρ = θ = 0.817), resulting

in α = g/ρ = 0.306. For the Markov equilibrium, we take ρ = .7724 and θ = .9511.

These choices preserve g = .25.

Sea level rise in damages

Climate change does not stop at temperature changes. After temperature rises, the sea

level will rise as well, and it may do so more or less proportionally to temperatures

(Jevrejeva et al. 2011). When damages are proportional to output and quadratic in the

level of sea-level rise, we can use SLRt for the damages associated with sea level rise,

and write for the dynamics of damages

SLRt = SLRt−1 + εSLR(πSLRDt − SLRt)

It is a tedious but straightforward matter to derive the resulting dynamics as

SLRt =
∑

i

∑
j

∑
τ
aibjππSLRεjεSLR×

(εj − εSLR)(1− δi)τ+1 + (εSLR − δi)(1− εj)τ+1 + (δi − εj)(1− εSLR)τ+1

(εj − δi)(εj − εSLR)(εSLR − δi)
zt−τ

where we forego the terms associated with the initial conditions. Let ∆SLR be the

costs relative to output of 1m sea level rise. After some tedious substitutions, the Markov

equilibrium carbon price is then calculated as

ρζSLR =
∑

i

∑
j
aibjππSLRεjεSLRρ∆SLR ×

(ε2
j − δ2

i )εSLR + (ε2
SLR − ε2

j)δi + (δ2
i − ε2

SLR)εj

(εj − δi)(εj − εSLR)(εSLR − δi)(1− θ[1− εSLR])(1− θ[1− εj])(1− θ[1− δi])

For sea level rise, both the senstivity πSLR and the speed of adjustment εSLR are

both very uncertain, but the estimates for both parameters are strongly and negativel

correlated: a higher sensitivity must be matched with a lower adjustment speed, to match

the historically observed records, εSLRπSLR ∈ [0.02, 0.05] (per decade). Estimates for the

sensitivity range from 0.2 to 5 meter sea level rise per W/m2 forcing increase (Jevrejeva

2011), where typically 1W/m2 leads to a temperature rise just below 1 Kelvin, so that our
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parameters range would be πSLR ∈ [0.2, 4]. A choice of πSLR = 1 [m/K] and εSLR = 0.04

would represent a reasonable assumption. Yet, the resulting carbon prices will not deviate

too much from the carbon prices presented in the main text. The literature does not

provide estimates for damages associated with sea level rise that substantially exceed

those for temperature rise, that is ∆SLRπSLR � ∆y, so that, given the extended lag in

sea level rise, the increase in the level of carbon prices associated will be small in relative

terms.

Comparison of climate response functions

We compare our response function for damages, as percentage of output, resulting from

emissions, with those in Nordhaus (2007) and Golosov et al. (2011). The GAMS source

code for the DICE model provides a large variety of scenarios with different policies

such as temperature stabilization, concentration stabilization, emission stabilization, the

Kyoto protocol, a cost-benefit optimal scenario, and delay scenarios. For each of these

scenarios we calculated the damage response function by simulating an alternative sce-

nario with equal emissions, apart from a the first period when we decreased emissions

by 1GtCO2. Comparison of the damages, in terms relative of output, then defines the

response function for that specific scenario. It turns out that the response functions

are very close, and we took the average over all scenarios. To interpret the response

function in Nordhaus (2007), we notice that the average DICE carbon cycle and damage

response can very accurately be described by our reduced form using the parameters

a = (0.575, 0.395, 0.029), δ = (0.310, 0.034, 0), which give a perfect fit for the carbon

cycle of DICE2007, and ε = 0.183, π = 4.09 for the temperature delay. That is, the

carbon-cycle in DICE (Nordhaus 2007) is characterized by a very large long-term up-

take of CO2 in the oceans. The reduced model in Golosov et al. is represented by

a = (0.2, 0.486, 0.314), δ = (0, 0.206, 1), which implies a similar carbon cycle model to

ours, but Golosov et al. have no temperature delay structure, ε = 1. The figure below
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presents the emissions damage responses.

Figure 6. Emissions-damage response after a 1TtCO2 impulse in three models
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