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1 Introduction

Models of capital accumulation and resource depletion have been analyzed since

the Dasgupta-Heal-Solow-Stiglitz (DHSS) (Dasgupta and Heal, 1974; Solow, 1974;

Stiglitz, 1974) model was introduced in the early 1970s. They allow the analyst to

pose the question of whether and how accumulation in augmentable capital can make

up for the depletion of an exhaustible and non-renewable resource. Their relevance

is not only tied to the limited supply of natural resources (like oil and gas) as, in the

very long run, the atmosphere’s cumulative capacity for absorbing CO2 without caus-

ing serious climate change is a non-renewable and exhaustible resource. Thus, such

models can be used to enhance our understanding of intergenerational conflicts.

The DHSS model poses three interesting and separate problems.

(1) The sustainability problem: is it feasible to sustain indefinitely a level of con-

sumption that is bounded away from zero?

(2) The maximin existence problem:1 is there a maximum level of consumption

that can be sustained?

(3) The maximin efficiency problem: is keeping consumption equal to the maxi-

mum sustainable level efficient?

Whether there is a non-trivial sustainable path in the DHSS model matters also for

the criteria of undiscounted utilitarianism (Dasgupta and Heal, 1979, sect. 10.3),

sustainable discounted utilitarianism (Asheim and Mitra, 2010, sect. 5), and (ex-

tended) rank-discounted utilitarianism (Zuber and Asheim, 2011, sect. 6.2): in the

former case no optimal path exists while in the latter cases all paths are equally bad

if positive consumption cannot be sustained. Hence, the sustainability problem has

relevance also if one does not ascribe to maximin as an extreme egalitarian criterion.

Posing these questions thus responds to a call from Koopmans (1965, p. 228–229):

“. . . to argue against the complete separation of the ethical or political choice of

an objective function from the investigation of the set of technologically feasible

paths. . . . Ignoring realities in adopting ‘principles’ may lead one to search for

a nonexistent optimum, or to adopt an ‘optimum’ that is open to unanticipated

objections.”

1Note that even when the set of positive consumption levels that can be sustained indefinitely

is non-empty and bounded, it need not contain its least upper bound. We provide an example of

this at the end of Section 3.
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Solow (1974) was first to pose these problems. He applied the maximin criterion

in the context of the DHSS model, whereby the consumption of the worst-off gen-

eration is maximized. By letting output be a Cobb-Douglas function of capital and

resource input, Solow (1974) solved the maximin problem in the continuous time

DHSS model by calculating closed-form solutions. He showed that an efficient and

egalitarian maximin path with positive consumption exists if and only if the con-

stant elasticity of output with respect to augmentable capital, a, exceeds that with

respect to resource input, b. Moreover, if this condition is not satisfied, the great-

est lower bound for consumption is zero, so that no positive level of consumption

can be sustained indefinitely and any path solves the maximin problem. Together,

these observations show that the solution of the sustainability problem depends on

whether a > b and establish general maximin existence in the Cobb-Douglas case.

The condition a > b is a requirement on the production function in the special

Cobb-Douglas class. Is it possible to generalize such a condition on the production

function to a much more general class? Does there exist a complete technological

characterization of the sustainability problem that depends only on the production

function and the initial stocks and does not involve any reference to time paths? In

Theorems 1 and 2 we establish that this is indeed possible under weak assumptions

on the production function (other than usual neoclassical properties, the property

that positive output requires positive inputs of both capital and resource). We do

so by providing a condition which takes the form of an integral criterion that can

be checked directly using information only about the production function.

The constructive strategy on which our characterization is based yields new im-

portant insights into the meaning and significance of Hartwick’s rule for reinvesting

resource rents. Hartwick’s rule prescribes that the value of resource depletion be rein-

vested in augmentable capital. As is well-known (Hartwick, 1977; Dixit, Hammond

and Hoel, 1980), following Hartwick’s rule leads to constant consumption if technol-

ogy is stationary. However, as suggested already by Buchholz (1984, pp. 69–70) (see

also Martinet and Doyen, 2007, p. 25), following Hartwick’s rule also maximizes the

ratio of capital accumulation to resource depletion for a given level of consumption.

Thus, in the capital stock/resource stock space, Hartwick’s rule can be understood

as a prescription for maximal conservation of the economy’s productive capacity,

subject to the constraint imposed by maintaining current consumption.

Our approach is related to the Cass-Mitra (Cass and Mitra, 1991) integral cri-

terion characterization of the sustainability problem, which also translates informa-
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tion about time paths to information about the technology. However, the present

characterization uses a resource requirement function along a path which satisfies

Hartwick’s rule, and this is absent (at least directly) in the Cass-Mitra characteri-

zation, which uses the resource requirement function along isoquants of the produc-

tion function. That is, the present characterization focuses directly on maintaining

a constant consumption (by following Hartwick’s rule), while the Cass-Mitra char-

acterization focuses on behavior associated with maintaining constant output as a

means to providing a consumption stream that is bounded away from zero.2

By showing that the set of consumption levels for which a path satisfying Hart-

wick’s rule exists, if non-empty, is bounded and contains its least upper bound, we

can use the techniques developed for Theorems 1 and 2 to show that there is always

a maximum level of consumption that can be sustained, as reported in Theorem 3.

Thus, we establish existence of a maximin path in the continuous-time DHSS model

under weaker assumptions than those imposed in previous literature. In particular,

we consider a technological environment where (contrary to the Cobb-Douglas case)

we cannot prove that an egalitarian path with consumption equal to the maximin

level is efficient even if a path with consumption bounded away from zero exists.

The efficient and egalitarian maximin path in the Cobb-Douglas version of the

DHSS model is an example of a regular maximin path (Burmeister and Hammond,

1977; Dixit, Hammond and Hoel, 1980), being a price supported constant consump-

tion path with finite present value of future consumption and which satisfies a cap-

ital value transversality condition and resource exhaustion. Regularity entails that

reduced consumption on a finite time interval can be transformed into a uniform

addition to consumption for the rest of the path and implies that any maximin path

is egalitarian and efficient. In the discrete-time setting, conditions for regularity

were studied by Dasgupta and Mitra (1983) and Cass and Mitra (1991), while in

the continuous-time literature on maximin paths, it has been common simply to as-

sume regularity (see, e.g., Withagen and Asheim, 1998; Cairns and Long, 2006). In

Theorem 4 we show that under an additional assumption (namely that the produc-

tion function has the property that the resource is ‘important’) the egalitarian path

2The Cass-Mitra characterization is in a discrete-time model, where (as noted by Dasgupta and

Mitra, 1983) Hartwick’s rule does not hold for efficient equitable paths (which are always maximin

paths as well). So, following Hartwick’s rule was not a natural benchmark in that setting. The

Cass-Mitra characterization also uses a set of minimal standard assumptions on the technology; in

particular, smoothness conditions are not used there.
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following Hartwick’s rule with consumption equal to the maximin level is efficient if

there exists a path with consumption bounded away from zero.

The paper is organized as follows. We introduce the DHSS model with its as-

sumptions in Section 2. Then in Section 3 we provide an intuitive explanation of

our strategy of proof and how it yields insights into the meaning and significance

of Hartwick’s rule, before presenting our complete technological characterization of

the sustainability problem and our maximin existence result. The formal proofs of

these theorems are presented Sections 4-7. We finally discuss the issue of maximin

efficiency in Section 8 and offer concluding remarks in Section 9.

2 Preliminaries

Denote by k the stock of an augmentable capital good (which is assumed to be

non-depreciating) and by r the flow of an exhaustible resource input. Denote by

F : R2
+ → R+ the production function for the capital/consumption good, employing

k and r as inputs. The output F (k, r) is used to provide a flow of consumption, c,

or to augment the capital stock through a flow of net investment, k̇. Output F (k, r)

is the only source of consumption or net investment.

Throughout we will impose the following three assumptions on F (where sub-

script 1 signifies the partial derivative w.r.t. the first variable, etc.):

Assumption 1 (A1) F (0, r) = F (k, 0) = 0 for k ≥ 0 and r ≥ 0.

Assumption 2 (A2) F is continuous, concave and nondecreasing on R2
+.

Assumption 3 (A3) F is twice continuously differentiable on R2
++, with F1(k, r) >

0, F2(k, r) > 0, and F22(k, r) < 0 for (k, r) ∈ R2
++.

Let (k0,m0) � 0 be a vector of initial stocks of capital and resource. A path

from (k0,m0) is a triplet of functions (c(t), k(t), r(t)), with c(·) : [0,∞) → R+,

k(·) : [0,∞)→ R+ and r(·) : [0,∞)→ R+, where k(t) is differentiable and (c(t), r(t))

are continuous, and where

c(t) = F (k(t), r(t))− k̇(t) , (1)

k(0) = k0 , (2)∫ ∞
0

r(t)dt ≤ m0 . (3)
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Write m(·) : [0,∞)→ R+ for the associated function of remaining resource stock:

m(t) = m0 −
∫ t

0
r(τ)dτ for t ≥ 0 .

Note that along any path (c(t), k(t), r(t)) from (k0,m0), both k(t) and m(t) are

continuously differentiable functions of t.

A triple (c, k, r) � 0 satisfies Hartwick’s reinvestment rule (Hartwick, 1977;

Dixit, Hammond and Hoel, 1980) if

F (k, r)− c = F2(k, r)r . (HaR)

A path (c(t), k(t), r(t)) from (k0,m0) is interior if k(t) > 0 and r(t) > 0 for all

t ≥ 0. A path (c(t), k(t), r(t)) from (k0,m0) is egalitarian if there is c ≥ 0 such that

c(t) = c for all t ≥ 0. A path (c(t), k(t), r(t)) from (k0,m0) is a maximin path if

inf
t≥0

c(t) ≥ inf
t≥0

c′(t) (2)

for every path (c′(t), k′(t), r′(t)) from (k0,m0). A maximin path is non-trivial if, in

addition, inft≥0 c(t) > 0.

Assumptions A1–A3 do not imply that it is feasible to sustain a path from

(k0,m0) with consumption bounded away from zero. Therefore, the set

C(k0,m0) ≡ {c ∈ R++ : ∃(c(t), k(t), r(t)) from (k0,m0) with c(t) ≥ c for t ≥ 0}

of positive sustainable consumption levels need not be non-empty. In particular, if

F (k, r) = karb for (k, r) ∈ R2
+, with a > 0, b > 0 and a+ b ≤ 1, (4)

then assumptions A1–A3 are clearly satisfied. However, as shown by Solow (1974,

sect. 8 & App. B),3 the set C(k0,m0) is non-empty if and only if a > b.

Solow (1974, p. 34) provided a justification for restricting his analysis to the

Cobb-Douglas case, where his footnote 2 is particularly persuasive:

“Only the Cobb-Douglas will do among CES functions. If the elasticity of

substitution between resources and other factors exceeds one, then resources

are not indispensable to production. If it is less than one, then the average

product of resources is bounded. So only the Cobb-Douglas remains.”

3Solow (1974) did not provide an analysis of the borderline case in which a = b.
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However, several authors subsequently investigated the sustainability problem under

more general production functions. E.g., Dasgupta and Heal (1979, p. 226) showed

that if the elasticity of substitution σ between k and r depends on the ratio r/k

only, then what counts is lim inf σ(r/k) when r/k goes to zero: C(k0,m0) is empty

if it is smaller than 1, while C(k0,m0) is non-empty if it is greater than 1 or if it is

equal to 1 and the share of capital exceeds that of the resource.

Others felt that instead of separating the issues of (i) comparing a and b in the

Cobb-Douglas case (σ = 1), and (ii) whether σ ≶ 1 for the class of CES functions,

Solow’s (and Dasgupta and Heal’s related) observations on these two issues should

follow from a more general unifying principle. This led naturally to an investigation

of how the nature of the isoquant map (between k and r) characterizes sustainability.

Almost simultaneously, and independently, this approach was developed by Mitra

(1978b), Buchholz (1982), and Shimomura (1983). For an account of this line of

enquiry, see Kemp, Long and Shimomura (1984).

The isoquant map is easy to study in the case in which the production function

F (k, r) is homogeneous of degree one in (k, r), as assumed by Dasgupta and Heal

(1974), but not by Solow (1974) (and not here). For, in this case, each isoquant is

simply a scaled version of the unit output isoquant. The criterion for sustainability

then turns out to be: ∫ ∞
k0

r̃(k)dk <∞ ,

where r̃(k) is defined by F (k, r̃(k)) = 1. That is, the “area under the unit isoquant”

from k0 to infinity be finite. Given this criterion, which was established in discrete

time by Mitra (1978b) and in continuous time by Buchholz (1982), one can easily

derive the observations of Solow (1974) regarding the roles of the (i) a and b in the

Cobb-Douglas case, and (ii) σ for the class of CES functions, as special cases.

A more general criterion, not relying on smoothness assumptions on the produc-

tion function, and the assumption that F (k, r) be homogeneous of degree one, was

established by Cass and Mitra (1979), which was eventually published as Cass and

Mitra (1991). Few papers have subsequently been concerned with the sustainability

problem, Martinet and Doyen (2007) being one exception. The present paper adds

to the literature by using Hartwick’s rule to yield an easily interpretable character-

ization of the sustainability problem, with a strategy of proof that as a by-product

also yields results on maximin existence and efficiency.
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3 Hartwick’s rule as a resource requirement function

We first state a lemma which is the foundation for our main results. Let

D = {(c, k) ∈ R2
++ : there exists r > 0 such that F (k, r) > c}

be a domain set of capital-consumption pairs which allow for positive capital accu-

mulation, and furthermore, define the associated correspondence:

D(k) = {c ∈ R++ : (c, k) ∈ D} for k ∈ R++ .

Note that for every k > 0, D(k) is non-empty, since every 0 < c < F (k, 1) belongs

to D(k). In fact, it is easy to verify that D(k) is the interval (0, limr→∞ F (k, r)).

We establish a resource requirement function defined on the domain set, D.

Lemma 1 Assume that F satisfies A1–A3, and let (c, k) ∈ D. Then, there is a

unique solution r(c, k) to

max
r>0

F (k, r)− c
r

. (5)

Furthermore, (c, k, r) satisfies (HaR) if and only if r = r(c, k). Finally, the function

r : D → R++ is continuously differentiable with

r1(c, k) > 0 for all (c, k) ∈ D . (6)

It follows from Lemma 1, which will be proven in Section 4, that Hartwick’s

rule (cf. (HaR))—prescribing that the value of resource depletion be reinvested in

augmentable capital—is satisfied if and only if r = r(c, k):

F (k, r(c, k))− c = F2(k, r(c, k))r(c, k) .

However, following (Buchholz, 1984, pp. 69–70),4 Lemma 1 shows that r(c, k) has

another interpretation: Since k̇ = F (k, r)− c and ṁ = −r, it is the rate of resource

depletion that maximizes the ratio of capital accumulation to resource depletion,

k̇

−ṁ
=
F (k, r)− c

r
,

subject to the rate of consumption being equal to c. In other words,

r(c, k)

F (k, r(c, k))− c
=

1

F2(k, r(c, k))

7
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Figure 1: Maximizing the capital accumulation/resource depletion ratio

is the required resource depletion per unit capital accumulation if consumption is to

be maintained at c. This observation is crucial for the main results of this paper.

To sketch the arguments on which our proofs are based, let c ∈ D(k0) and

consider the path in (k,m) space determined by (k(0), m(0)) = (k0,m0) � 0 and,

for all t ≥ 0, k̇(t) = F (k(t), r(c, k(t))) − c and −ṁ(t) = r(c, k(t)), as illustrated by

the solid line path in Figure 1. Refer to this path, provided that it exists, as the

Hartwick path from (k0,m0) given the consumption level c.

If the accumulated resource input along the Hartwick path from (k0,m0) given

the consumption level c does not exceed the initial resource stock m0, then it is

clearly feasible to sustain indefinitely a flow of consumption that is bounded away

from zero. Since the accumulated resource input can be found by integrating the

required resource depletion per unit capital accumulation from k0 to∞, without ref-

erence to the time path, this leads to the following sufficient condition for C(k0,m0)

being non-empty:

4In their Prop. 3 and subsequent discussion, Martinet and Doyen (2007) provide similar insights

in the Cobb-Douglas case, using the viable control approach.
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Theorem 1 Assume that F satisfies A1–A3, and let (k0,m0) >> 0 be given. If

inf
c∈D(k0)

∫ ∞
k0

1

F2(x, r(c, x))
dx < m0 , (7)

then C(k0,m0) is non-empty.

Among all paths from (k0,m0), the Hartwick path maximizes at each point in

(k,m) space the ratio of capital accumulation to resource depletion subject to the

rate of consumption being equal to c. This reasoning indicates that any path with

consumption bounded below by c deviating from the Hartwick path in (k,m) space

must follow a trajectory like the one illustrated by the dashed line path in Figure 1.

To sustain consumption weakly above c indefinitely, the accumulated stock of

augmentable capital must substitute for the flow of resource input so that the initial

resource stock, m0, is never exhausted. In Figure 1 this means that the path in

(k,m) space must never intersect the vertical axis. Hence, if it is feasible to sustain

consumption weakly above c, then there exists a Hartwick path from (k0,m0) given c,

as there is no path to the north-east of the Hartwick path that sustains consumption

weakly above c. By integrating the required resource depletion per unit capital

accumulation from k0 to ∞, without reference to the time path, this leads to the

following necessary condition for C(k0,m0) being non-empty:

Theorem 2 Assume that F satisfies A1–A3, and let (k0,m0) >> 0 be given. If

C(k0,m0) is non-empty, then

inf
c∈D(k0)

∫ ∞
k0

1

F2(x, r(c, x))
dx < m0 . (7)

The proofs of Theorems 1 and 2 show that if C(k0,m0) is non-empty and c

is in the interior of C(k0,m0), then there is a Hartwick path from (k0,m0) given

c. Furthermore, it holds that the set of consumptions levels c for which there is a

Hartwick path from (k0,m0) given c is bounded above and contains its least upper

bound. It therefore follows that C(k0,m0) is bounded above and contains its least

upper bound c̄, and sustaining consumption at c̄ can be implemented by following

the Hartwick path from (k0,m0) given c̄. This establishes existence of a maximin

path from (k0,m0) if C(k0,m0) is non-empty. If, on the other hand, C(k0,m0) is

empty and (c(t), k(t), r(t)) is a path from (k0,m0), then inft≥0 c(t) = 0. Hence, all

paths are trivially maximin. Moreover, (c0(t), k0(t), r0(t)) with c0(t) = 0, k0(t) = k0

and r0(t) = 0 is a path from (k0,m0), showing that the set of maximin paths is

non-empty also in this case. This establishes maximin existence:
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Theorem 3 Assume that F satisfies A1–A3, and let (k0,m0) >> 0 be given. There

exists a maximin path from (k0,m0).

To turn these sketches into stringent proofs, various issues must be addressed.

We do so in the subsequent Sections 4–7. Throughout these proofs, we assume that

F satisfies A1–A3. Before doing so, we illustrate our results by examples.

We first illustrate Theorems 1 and 2 by showing how condition (7)—the criterion

for C(k0,m0) to be non-empty—corresponds to a > b in the Cobb-Douglas version

of the DHSS model considered by Solow (1974), where the production function is

given by (4). As already noted, assumptions A1–A3 are clearly satisfied.

It is easy to check that D = R2
++ and D(k) = (0,∞) for each k ∈ R++. Thus, r

is a function from R2
++ to R++. Given any (c, k) ∈ R2

++, r(c, k) satisfies (HaR), and

it is straightforward to verify that:

r(c, k) =
c(1/b)

(1− b)(1/b)k(a/b)
for all (k, c) ∈ R2

++ . (8)

Then the criterion (7) for C(k0,m0) to be non-empty translates to

inf
c>0

[
c(1−b)/b

b(1− b)(1−b)/b

]∫ ∞
k0

1

x(a/b)
dx < m0 (9)

by using (8). Clearly, with (k0,m0)� 0, (9) holds if and only if a > b, which is the

result of Solow (1974, sect. 8 & App. B).

Following Dasgupta and Heal (1979, Sect. 7.2) by considering the class of CES

production functions beyond the Cobb-Douglas case, so that

F (k, r) =
(
ak

σ−1
σ + br

σ−1
σ + (1− a− b)

) σ
σ−1

for (k, r) ∈ R2
+, with a > 0, b > 0, a+ b ≤ 1 and σ > 0, σ 6= 1, we have that:

• If σ < 1, then assumptions A1–A3 are satisfied, but (7) cannot hold since

1

F2(k, r(c, k))
=

r(c, k)

F (k, r(c, k))− c
≥ r(c, k)

F (k, r(c, k))
≥ b

σ−1
σ

if c ∈ D(k0). This confirms the well-known result that C(k0,m0) is empty.

• If σ > 1, then assumption A1 is not satisfied—so that Theorems 1 and 2 do

not apply—while clearly C(k0,m0) is non-empty.
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Finally, by going to the limiting case where inputs are perfect substitutes (σ =

∞), we can provide an example where C(k0,m0) is non-empty and bounded, but

does not contain its least upper bound, thereby showing the significance of Theorem

3. In particular, let F be specified by

F (k, r) = k + r for (k, r) ∈ R2
+, (10)

and let (k0,m0) = (1, 1) be the vector of initial stocks of capital and resource. Even

though assumption A2 and most of assumption A3 hold, both A1 (since F (k, r) = 0

requires that both inputs are zero) and the last part of A3 (since F22 = 0) are

violated. Hence, maximin existence is not guaranteed by Theorem 3. And indeed,

as demonstrated in the appendix, C(1, 1) = (0, 2), implying that any consumption

level below 2 can be sustained indefinitely. However, since the resource stock cannot

be instantaneously transformed into capital, it is not feasible to maintain a level of

consumption that never falls below 2. Thus, there is no maximin path in this model.

4 Proving an alternative interpretation of Hartwick’s rule

We break up the proof of Lemma 1 into several steps.

Step 1: There exists a solution to (5). Since (c, k) ∈ D, there is some r0 > 0 such

that F (k, r0) > c. Since F (k, r) is continuous and increasing in r with F (k, 0)−c < 0

and F (k, r0)− c > 0, there is a unique r ∈ (0, r0) such that F (k, r) = c. Define:

R′ :=

{
r ≥ r :

F (k, r)− c
r

≥ F (k, r0)− c
r0

}
.

Then r0 ∈ R′, so that R′ is non-empty. Since (F (k, r)−c)/r is a continuous function

of r on [r,∞), the set R′ is closed. It follows from F (k, 0) = 0 and the concavity of

F that F (k, r) ≤ F (k/r, 1)r if r > 1. Hence, by F (0, r) = 0 and the continuity of F ,

lim
r→∞

F (k, r)− c
r

≤ lim
r→∞

F (k, r)

r
≤ lim

r→∞
F
(
k
r , 1
)

= 0 ,

implying that there exists r̄ > 0 such that r /∈ R′ for r > r̄. Hence, R′ ⊂ [r , r̄], so

that R′ is bounded. As (F (k, r) − c)/r is a continuous function of r on R′, there

exists a solution to maxr∈R′(F (k, r) − c)/r. By the definition of r, this is also a

solution to (5).

Step 2: There is at most one solution to (HaR). Define:

V (r) ≡ F (k, r)− c− F2(k, r)r for all r > 0 (11)
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Note that V is a C1 function on R++.

Suppose r′ and r′′ were both solutions to (HaR), with 0 < r′ < r′′. Then

V (r′) = V (r′′) = 0. We can find 0 < a < r′ and b > r′′, and define

U(r) ≡
∫ r

a
V (s)ds for r ∈ [a, b] .

Then, we have U ′(r) = V (r) for all r ∈ (a, b).5 By using (11), we can infer that U

is a C2 function on (a, b), and for all r ∈ (a, b), U ′′(r) = V ′(r) = −F22(k, r)r > 0.

Thus, U is a strictly convex C2 function on (a, b), and we get the contradiction:

0 = U ′(r′)(r′′ − r′) < U(r′′)− U(r′) < U ′(r′′)(r′′ − r′) = 0 .

Step 3: There is a unique solution to (5), and this uniquely solves (HaR). Since

(F (k, r)− c)/r is a continuously differentiable function of r on R++, any solution r

to (5) satisfies the first-order condition

F2(k, r)

r
− F (k, r)− c

r2
= 0 ,

and therefore is also a solution to (HaR). By Steps 1 and 2, there is a unique solution

to (5). We denote the unique solution to (5) by r(c, k). Then, r(c, k) is a solution

to (HaR), and is the only solution to (HaR) by Step 2.

Step 4: The unique solution to (5), r(c, k), is continuously differentiable on D.

Note that by continuity of F , the set D is open in R2. Define Y := D × R++.

Clearly, Y is an open set in R3, and we can define:

H(c, k, r) = F (k, r)− c− F2(k, r)r for (c, k, r) ∈ Y .

Then, H is continuously differentiable on Y , and by Step 3, we have:

H(c, k, r) = 0 for r = r(c, k) .

Furthermore, for r = r(c, k),

∂H(c, k, r)

∂r
= −F22(k, r)r > 0 .

Thus, by the implicit function theorem,6 there is an open set N ⊂ X := (0, c′) ×
(k′,∞) containing (c, k) and an open set M ⊂ Y , containing (c, k, r(c, k)), and a

unique function g : N → R++, such that

5See Rudin (1976), Theorem 6.20, p. 133.

6See Rudin (1976), Theorem 9.28, p. 224–225.
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(i) for all (c̃, k̃) ∈ N , we have H(c̃, k̃, g(c̃, k̃)) = 0, and

(ii) g(c, k) = r(c, k).

Furthermore, g is continuously differentiable on N . Since, by Step 3, we certainly

have H(c̃, k̃, r(c̃, k̃)) = 0 for all (c̃, k̃) ∈ N ⊂ D, we can infer that g(c̃, k̃) = r(c̃, k̃)

for all (c̃, k̃) ∈ N . Thus, r is continuously differentiable on N . Since (c, k) ∈ D was

arbitrary, r is continuously differentiable on D.

Step 5: r1(c, k) is positive. By definition of r on D, we have:

F (k, r(c, k))− c− F2(k, r(c, k))r(c, k) = 0 for all (c, k) ∈ D .

Thus, differentiating this equation w.r.t. c yields

F2(k, r(c, k))r1(c, k)− 1− F22(k, r(c, k))r1(c, k)r(c, k)− F2(k, r(c, k))r1(c, k) = 0 ,

from which (6) can be inferred.

5 Proving the sufficiency theorem

We first provide some preliminary results in the form of two lemmas, before providing

the proof of Theorem 1.

Lemma 2 Let (c, k0) ∈ D. Consider the differential equation:

ẋ(t) = F (x(t), r(c, x(t)))− c ; x(0) = k0 , (12)

where r : D → R++ is the function obtained in Lemma 1. If kc(t) is a solution to

the differential equation for t ∈ [0, T ), for some T > 0, then

(i) kc(t) ≥ k0 for all t ∈ [0, T ),

(ii) k̇c(t) > 0 for all t ∈ [0, T ) and kc(t) is monotonically increasing on [0, T ).

Proof. Since (c, k0) ∈ D implies that F (k0, r(c, k0))− c > 0, we have k̇c(0) > 0.

Since k̇c is continuous, there is ε ∈ (0, T ) such that k̇c(t) > 0 for all t ∈ [0, ε],

and so by the Mean Value theorem, kc(t) > k0 for all t ∈ (0, ε]. We claim that

kc(t) ≥ k0 for all t ∈ [0, T ). If not, there is τ ′ ∈ (ε, T ) such that kc(τ ′) < k0.

Let τ ≡ inf{t ∈ (ε, T ) : kc(t) < k0}. Then, ε ≤ τ ≤ τ ′ < T , and kc(τ) ≤ k0

by continuity of kc. Also, by definition of τ , kc(t) ≥ k0 for all t ∈ [0, τ). Thus,
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kc(τ) ≥ k0 by continuity of kc, and consequently kc(τ) = k0. Then, using the fact

that kc(t) ≥ kc(τ) for all t ∈ [0, τ), we must have k̇c(τ) ≤ 0. On the other hand, since

kc(τ) = k0, we must have k̇c(τ) > 0 by using (12). This contradiction establishes

our claim and hence (i).

Since (c, k0) ∈ D and kc(t) ≥ k0 for all t ∈ [0, t), it follows that (c, kc(t)) ∈ D
for all t ∈ [0, T ). Thus, by definition of r, we must have k̇c(t) > 0 for all t ∈ [0, T ),

and so kc(t) is monotonically increasing on [0, T ) by the Mean Value Theorem. This

establishes (ii).

Remark 1 Under the hypothesis of Lemma 2, we have kc(t) monotonically increas-

ing on [0, T ). Then, either kc(t) is bounded above on [0, T ), in which case a finite

limit, limt→T k
c(t), exists; or, kc(t) is not bounded above on [0, T ), in which case

kc(t)→∞ as t→ T . In either case, we define

kc(T ) = lim
t→T

kc(t) ,

it being understood that the limit above belongs to (k0,∞].

Lemma 3 Let (c, k0) ∈ D. Suppose that there is a solution kc(t) to the differential

equation

ẋ(t) = F (x(t), r(c, x(t)))− c ; x(0) = k0 (12)

for t ∈ [0, T ) for some T > 0, where r : D → R++ is the function obtained in Lemma

1. Then, for every T ′ ∈ (0, T ),∫ T ′

0
r(c, kc(t))dt =

∫ kc(T ′)

k0

1

F2(x, r(c, x))
dx (13)

and

lim
T ′→T

∫ T ′

0
r(c, kc(t))dt =

∫ kc(T )

k0

1

F2(x, r(c, x))
dx . (14)

Furthermore, if:

∞ > S := lim
T ′→T

∫ T ′

0
r(c, kc(t))dt (15)

then kc(T ) <∞.

Proof. For every T ′ ∈ (0, T ), r(c, kc(t)) is continuous on [0, T ′] and the Riemann

integral
∫ T ′

0 r(c, kc(t))dt is well-defined. Define:

f(x) =
1

F2(x, r(c, x))
for x ∈ [k0, k

c(T ′)] and g(t) = kc(t) for t ∈ [0, T ′] .
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Then, by the change of variable formula,7∫ kc(T ′)

k0

f(x)dx =

∫ T ′

0
f(g(t))g′(t)dt

so that ∫ kc(T ′)

k0

1

F2(x, r(c, x))
dx =

∫ T ′

0

[
1

F2(kc(t), r(c, kc(t)))

]
k̇c(t)dt .

Thus, (13) follows from (HaR), which is satisfied by definition of the function r and

Lemma 1. Furthermore, (14) follows by letting T ′ → T in (13).

Assume now that (15) holds. Write rc(t) = r(c, kc(t)) for t ∈ [0, T ) and

λ = max{F (1, 1/k0)/k0, F (k0, 1), F (k0, 1)/k0} .

For t ∈ [0, T ), either (i) rc(t) ≤ kc(t)/k0, or (ii) rc(t) > kc(t)/k0. Case (i) can be

divided into two subcases: (i)(a) kc(t) ≤ 1 and (i)(b) kc(t) > 1. In case (i)(a),

k̇c(t)/kc(t) ≤ F (kc(t), rc(t))/kc(t) ≤ F (1, 1/k0)/k0 ≤ λ . (16)

In case (i)(b),

k̇c(t)/kc(t) ≤ F (kc(t), rc(t))/kc(t) ≤ F (1, rc(t)/kc(t)) ≤ F (1, 1/k0) ≤ λ . (17)

In case (ii), we have that rc(t) > kc(t)/k0 ≥ 1, so

k̇c(t) ≤ F (kc(t), rc(t)) ≤ rc(t)F (kc(t)/rc(t), 1) ≤ rc(t)F (k0, 1)

and

k̇c(t)/kc(t) ≤ rc(t)F (k0, 1)/k0 ≤ λrc(t) . (18)

Let Λ = {t ∈ [0, T ) : rc(t) > kc(t)/k0}. Then, by (16)–(18), we have:∫
[0,T )

(
k̇c(t)/kc(t)

)
dt ≤

∫
Λ
λrc(t)dt+

∫
[0,T )\Λ

λdt ≤ λ(S + T ) . (19)

Thus, for every t ∈ (0, T ), ln kc(t) ≤ ln k0 + λ(S + T ), showing that kc(T ) <∞.

We now present the proof of Theorem 1.

Proof of Theorem 1. Let (k0,m0) >> 0 be given. Then, since (7) is satisfied,

we can find c ∈ D(k0) such that∫ ∞
k0

1

F2(x, r(c, x))
dx ≤ m0 . (20)

7See Apostol (1974) Theorem 7.36, p. 164.
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Note that since c ∈ D(k0), we can find k0 > ε > 0 such that c ∈ D(k) for all

k ∈ (k0 − ε,∞). Then r(c, k) is a C1 function of k from the open set (k0 − ε,∞) to

R++. Thus, by defining

f(k) = F (k, r(c, k))− c for all k ∈ (k0 − ε,∞) ,

we see that f is a C1 function from the open set (k0 − ε,∞) to R. Using Theorem

1 of Hirsch and Smale (1974, pp. 162–163), there is a > 0 and a unique solution

xc : [0, a)→ (k0 − ε,∞) to the differential equation

ẋ(t) = F (x(t), r(c, x(t)))− c for t ∈ [0, a)

satisfying xc(0) = k0. Define the set B of b ∈ [a,∞] such that there is a solution

φc : [0, b)→ (k0 − ε,∞) to the differential equation

ẋ(t) = F (x(t), r(c, x(t)))− c for t ∈ [0, b)

satisfying φc(0) = k0. Since a ∈ B, the set B is non-empty, and we define β = supB.

Define a′ = a/2. For each b ∈ [0, β), we can find b′ ∈ (b, β) and some solution

ψ : [0, b′)→ (k0 − ε,∞) to the differential equation

ẋ(t) = F (x(t), r(c, x(t)))− c for t ∈ [0, b′)

satisfying ψ(0) = k0. Since xc(t) is the unique solution to the differential equation

ẋ(t) = F (x(t), r(c, x(t)))− c for t ∈ [0, a)

we also have ψ(a′) = xc(a′). Furthermore, if there is b′′ ∈ (b, β) and some solution

ξ : [0, b′′)→ (k0 − ε,∞) to the differential equation

ẋ(t) = F (x(t), r(c, x(t)))− c for t ∈ [0, b′′)

satisfying ξ(0) = k0, then ξ(a′) = xc(a′) = ψ(a′). By letting b̄ := min{b′, b′′} and

using the Lemma in Hirsch and Smale (1974, p. 171), it follows that ξ(t) = ψ(t) for

all t ∈ (0, b̄) and therefore for all t ∈ [0, b̄). Then, we can define

kc(b) = ψ(b) .

This well-defines the function kc from [0, β) to (k0 − ε,∞). In particular, this

definition implies that kc(t) = ψ(t) for all t ∈ [0, b]. Then kc : [0, β) → (k0 − ε,∞)

is a solution to the differential equation

ẋ(t) = F (x(t), r(c, x(t)))− c for t ∈ [0, β)
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since for every t ∈ [0, β), it agrees with a solution; furthermore, kc(0) = k0. It

follows that if κc : [0, α)→ (k0 − ε,∞) is any solution to

ẋ(t) = F (x(t), r(c, x(t)))− c for t ∈ [0, α)

satisfying κ(0) = k0, then α ≤ β. The interval [0, β) is called the maximal right

interval of existence, given the initial condition. By Lemma 2, k̇c(t) > 0 and kc(t) ∈
[k0,∞) for all t ∈ [0, β).

We now claim that

β =∞ . (21)

For all T ′ ∈ (0, β), using (13) in Lemma 3 and (20), we have:∫ T ′

0
r(c, kc(t))dt =

∫ kc(T ′)

k0

1

F2(x, r(c, x))
dx ≤

∫ ∞
k0

1

F2(x, r(c, x))
dx ≤ m0 .

Thus,

∞ > m0 ≥ S ≡ lim
T ′→β ,

∫ T ′

0
r(c, kc(t))dt (22)

and by Lemma 3, we have kc(β) < ∞, where kc(β) ≡ limt→β k
c(t). Then by using

the Theorem in Hirsch and Smale (1974, p. 171), claim (21) is established.

Given (21), we know that kc from [0,∞) to (k0 − ε,∞) is a solution to the

differential equation

ẋ(t) = F (x(t), r(c, x(t)))− c for t ∈ [0,∞)

satisfying kc(0) = k0. Define cc(t) = c and rc(t) = r(c, kc(t)) for t ∈ [0,∞). It

follows from (22) that (cc(t), kc(t), rc(t)) is a path from (k0,m0). Furthermore, for

all t ≥ 0, cc(t) = c and so C(k0,m0) is non-empty.

6 Proving the necessity theorem

We first provide some preliminary results in the form of two lemmas, before providing

the proof of Theorem 2.

The phase diagram argument illustrated in Figure 1 is based on paths in (k,m)

space where the stock of augmentable capital k is a function of the remaining resource

stock m. Interior paths have this property, while non-interior paths where resource

extraction is zero at some time—so that consumption comes from divestment of

augmentable capital—do not. This motivates the following lemma.
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Lemma 4 Assume that C(k0,m0) is non-empty, and let c ∈ int(C(k0,m0)). Then

there is an interior path (c(t), k(t), r(t)) from (k0,m0) with c(t) > c for all t ≥ 0.

Proof. Since c ∈ int(C(k0,m0)), there is λ ∈ (0, 1) such that c = λc′ and c′ ∈
C(k0,m0). By the definition of C(k0,m0), there is (c′(t), k′(t), r′(t)) from (k0,m0)

with c′(t) ≥ c′ for t ≥ 0. Construct (c(t), k(t), r(t)) as follows:

c(t) = F (k(t), r(t))− k̇(t) for all t ≥ 0

k(t) = (1− λ)k0 + λk′(t) for all t ≥ 0 (23)

r(t) = λ[r′(t) + (ε/et)] for all t ≥ 0 ,

where ε = (1− λ)m0/λ > 0. We must show that (c(t), k(t), r(t)) is an interior path

from (k0,m0) with c(t) > c for t ≥ 0.

Clearly, k(t) is a differentiable function of t, with k̇(t) = λk̇′(t) for t ≥ 0, and

(c(t), r(t)) are continuous functions of t. Using (23), for t ≥ 0,

c(t) = F (k(t), r(t))− k̇(t) > F (λk′(t), r′(t))− λk̇′(t)

≥ λ[F (k(t), r(t))− k̇(t)] = λc′(t) ≥ λc′ = c .

Again using (23), r(t) > 0 for t ≥ 0 and∫ t

0
r(τ)dτ ≤ λ

∫ t

0
r′(τ)dτ + λε

so that: ∫ t

0
r(τ)dτ ≤ λ

∫ t

0
r′(τ)dτ + λε < λm0 + (1− λ)m0 = m0 .

Thus, (3) is satisfied. Also k(t) ≥ (1−λ)k0 > 0 for t ≥ 0, and k(0) = (1−λ)k0+λk0 =

k0 so (2) is satisfied.

We also need to establish that positive consumption cannot be sustained if the

stock of augmentable capital is bounded above.

Lemma 5 If a path (c(t), k(t), r(t)) from (k0,m0) has the property that c(t) ≥ c > 0

for t ≥ 0, then lim supt→∞k(t) =∞.

Proof. Suppose on the contrary that there is k̄ ∈ (0,∞) such that k(t) ≤ k̄ for

t ≥ 0. Then F (k̄, 0) = 0 and F (k̄, ·) is continuous, concave and increasing on R+.

Using Jensen’s inequality, we have for all T > 0:

1

T

∫ T

0
F
(
k̄, r(t)

)
dt ≤ F

(
k̄,

1

T

∫ T

0
r(t)dt

)
≤ F

(
k̄,
m0

T

)
.

18



Then we get:

k(T )− k0 =

∫ T

0
k̇(t)dt ≤

∫ T

0
F (k̄, r(t))dt− Tc ≤ T

[
F
(
k̄,
m0

T

)
− c
]
.

Since limT→∞ F
(
k̄,m0/T

)
= 0, this implies k(T ) < 0 for large T , contradicting that

k(t) ≥ 0 for t ≥ 0.

We now provide the proof of Theorem 2.

Proof of Theorem 2. Fix (c(t), k(t), r(t)) from (k0,m0) with c(t) > c > 0

for t ≥ 0 established in Lemma 4. By Lemma 5, lim supt→∞k(t) = ∞. Let T0 =

inf{t ≥ 0 : k(t) > k0}. Then k(T0) = k0 and k̇(T0) ≥ 0 so that

F (k0, r(T0)) = k̇(T0) + c(T0) ≥ c(T0) > c ,

establishing that (k0, c) ∈ D and c ∈ D(k0). So, we can find k0 > ε > 0 such that

c ∈ D(k) for all k ∈ (k0 − ε,∞). Then r(c, k) is a C1 function of k from the open

set (k0 − ε,∞) to R++. Thus, defining

f(k) = F (k, r(c, k))− c for all k ∈ (k0 − ε,∞) ,

we see that f is a C1 function from the open set (k0 − ε,∞) to R. Using Theorem

1 of Hirsch and Smale (1974, pp. 162–163), there is a > 0 and a unique solution

xc : [0, a)→ (k0 − ε,∞) to the differential equation

ẋ(t) = F (x(t), r(c, x(t)))− c for t ∈ [0, a) .

satisfying xc(0) = k0.

Using exactly the method used in the proof of Theorem 1, one can show that

there is an interval [0, β) and a solution kc : [0, β)→ (k0 − ε,∞), to the differential

equation

ẋ(t) = F (x(t), r(c, x(t)))− c for t ∈ [0, β)

satisfying kc(0) = k0, such that if φc : [0, α)→ (k0 − ε,∞) is a solution to

ẋ(t) = F (x(t), r(c, x(t)))− c for t ∈ [0, α)

satisfying φc(0) = k0, then α ≤ β. By Lemma 2, k̇c(t) > 0 and kc(t) ∈ [k0,∞) for

all t ∈ [0, β).

We now proceed to verify that (20) holds. It is sufficient to establish that∫ k1
k0

(1/F2(x, r(c, x)))dx < m0 for all k1 > k0. Suppose on the contrary that there

19



is k′1 ∈ (k0,∞) such that
∫ k′1
k0

(1/F2(x, r(c, x)))dx ≥ m0. Then, there is k1 ∈ (k0, k
′
1]

such that ∫ k1

k0

1

F2(x, r(c, x))
dx = m0 .

We claim now that

kc(t) > k1 for some t ∈ [0, β) . (24)

If β < ∞, then this follows directly from the Theorem of Hirsch and Smale (1974,

p. 171). If β = ∞, and claim (24) does not hold, then kc(t) ≤ k1 for all t ≥ 0. By

Lemma 3, we have∫ ∞
0

r(c, kc(t))dt =

∫ kc∞

k0

1

F2(x, r(c, x))
dx ≤

∫ k1

k0

1

F2(x, r(c, x))
dx = m0 ,

where kc∞ := limt→∞ k
c(t). However, this means that (c, kc(t), r(c, kc(t))) is a path

from (k0,m0), and since c > 0, it follows from Lemma 5 that lim supt→∞ k
c(t) =∞.

This clearly contradicts the hypothesis that claim (24) does not hold. Thus, in either

case, claim (24) is valid.

Using (24), we infer that there is T ∗ ∈ (0, β) such that kc(T ∗) = k1 and so by

Lemma 3, ∫ T ∗

0
r(c, kc(t))dt =

∫ k1

k0

1

F2(x, r(c, x))
dx = m0 .

Write rc(t) = r(c, kc(t)) and mc(t) = m0 −
∫ t

0 r
c(τ)dτ for t ∈ [0, T ∗]. Since

mc : [0, T ∗] → [0,m0] is continuously differentiable and decreasing on [0, T ∗], it

has an inverse function ic : [0,m0] → [0, T ∗] which is continuously differentiable

and decreasing on [0,m0]. We define hc : [0,m0] → [k0, k1] by hc(m) = kc(ic(m)).

Then hc is a continuously differentiable and decreasing function on [0,m0] which

determines the stock of augmentable capital as a function of the remaining resource

stock when the differential equation (12) is satisfied.

As (c(t), k(t), r(t)) from (k0,m0) is interior, m : [0,∞)→ (0,m0] is continuously

differentiable and decreasing on [0,∞) and has an inverse function i : (0,m0] →
[0,∞) which is continuously differentiable and decreasing on (0,m0]. We define

h : (0,m0] → [k0,∞) by h(m) = k(i(m)). Then h is a continuously differentiable

function on (0,m0] (but not necessarily a decreasing function as k̇(t) is not neces-

sarily positive) which determines the stock of augmentable capital as a function of

the remaining resource stock when (c(t), k(t), r(t)) is followed.
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Figure 2: Illustration of the proof of Theorem 2

By Lemma 5 there is T ′ ∈ (0,∞) such that k(T ′) > k1. Hence,

h(m) = k(T ′) > k1 = kc(T ∗) = hc(0) > hc(m) where m = m(T ′) ∈ (0,m0) ,

while h(m0) = k0 = hc(m0) so that {m ∈ [m,m0] : h(m) ≤ hc(m)} is non-empty.

By continuity of h and hc on (0,m0], m̄ = inf{m ∈ [m,m0] : h(m) ≤ hc(m)} > m

and h(m̄) = hc(m̄); let k̄ denote this common value. This is illustrated in Figure 2.

Since h(m) > hc(m) for m ∈ (m, m̄) and h(m̄) = hc(m̄), we have

h(m)− h(m̄)

m− m̄
<
hc(m)− hc(m̄)

m− m̄
for all m ∈ (m, m̄). Letting m → m̄ and noting that h and hc are continuously

differentiable on (0,m0], we obtain h′(m̄) ≤ hc′(m̄), and equivalently:

(−h′(m̄)) ≥ −(hc′(m̄)) . (25)

Since m̄ ∈ (0,m0), there is a unique T such that m(T ) = m̄ and

h′(m̄)ṁ(T ) = h′(m(T ))ṁ(T ) = k̇(T ) .

As ṁ(T ) = −r(T ) < 0 and k̇(T ) = F (k̄, r(T ))− c(T ), we have that

−h′(m̄) =
k̇(T )

−ṁ(T )
=
F (k̄, r(T ))− c(T )

r(T )
. (26)
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Since m̄ ∈ (0,m0), there is a unique T c such that mc(T c) = m̄ and

hc′(m̄)ṁc(T c) = hc′(mc(T c))ṁc(T c) = k̇c(T c) .

As ṁc(T c) = −rc(T c) < 0 and k̇c(T ) = F (k̄, rc(T ))− c, we have that

−hc′(m̄) =
k̇c(T c)

−ṁc(T c)
=
F (k̄, rc(T c))− c

rc(T c)
. (27)

Recall that c(T ) > c. Hence, it follows from Lemma 1 that

F (k̄, r(T ))− c(T )

r(T )
<
F (k̄, r(T ))− c

r(T )
≤ F (k̄, r(c, k̄))− c

r(c, k̄)
=
F (k̄, rc(T c))− c

rc(T c)
.

Combined with (26) and (27) this contradicts (25). Thus, (20) must hold.

Now, pick any c′ ∈ (0, c). Note that since c ∈ D(k0), we have c′ ∈ D(k0). By

Lemma 1, r1 > 0 on D, and we have r(c′, x, ) < r(c, x) for all x ∈ [k0,∞). Therefore,

since F22 < 0 on R2
++, we have:

F2(x, r(c′, x)) > F2(x, r(c, x)) for all x ∈ [k0,∞) . (28)

Using (28) in (20), we get: ∫ ∞
k0

1

F2(x, r(c′, x))
dx < m0 . (29)

Using (29) and c′ ∈ D(k0), we have that (7) holds. This establishes the theorem.

7 Proving the maximin existence theorem

By the remark prior to Theorem 3, it is sufficient to show the following proposition:

Proposition 1 If C(k0,m0) is non-empty, then there is an egalitarian maximin

path (c∗(t), k∗(t), r∗(t)) from (k0,m0) satisfying c∗(t) = supC(k0,m0) and (HaR)

for all t ≥ 0.

We first note the existence of a Hartwick path from (k0,m0) given c if there is a

path from (k0,m0) that sustains consumption above c.

Proposition 2 If C(k0,m0) is non-empty and c ∈ int(C(k0,m0)), then (20) holds

and there is a path (cc(t), kc(t), rc(t)) from (k0,m0) satisfying cc(t) = c and (HaR)

for all t ≥ 0.
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Proof. The proof of Theorem 2 shows that (20) holds and establishes existence

of path (cc(t), kc(t), rc(t)) from (k0,m0) satisfying cc(t) = c and (HaR) for all t ≥ 0,

provided that β = ∞. We have that β = ∞ by the argument in the penultimate

paragraph of the proof of Theorem 1.

We then provide some preliminary results in the form of three lemmas, before

providing the proof of Proposition 1. The two first lemmas show that (i) the set

of consumptions levels c that can be sustained from (k0,m0) is bounded above and

that (ii) this set’s least upper bound allows for positive capital accumulation from

the initial stock k0.

Lemma 6 If C(k0,m0) is non-empty, then C(k0,m0) is bounded.

Proof. By Proposition 2, if c ∈ int(C(k0,m0)), then there is a path (cc(t), kc(t),

rc(t)) from (k0,m0) satisfying cc(t) = c and (HaR) for all t ≥ 0. It suffices to show

that, for any c ∈ int(C(k0,m0)), c < F (k̄,m0), where ln k̄ = ln k0 + λ(m0 + 1) and

λ = max{F (1, 1/k0)/k0, F (k0, 1), F (k0, 1)/k0} .

By using (14) in Lemma 3 and (20) and repeating the last part of the proof of

Lemma 3, ln kc(t) ≤ ln k0 + λ(m0 + t) for all t ≥ 0. Hence, kc(t) ≤ k̄ for t ∈ [0, 1].

Then F (k̄, 0) = 0 and F (k̄, ·) is continuous, concave and increasing on R+. Using

Jensen’s inequality, we have:∫ 1

0
F
(
k̄, rc(t)

)
dt ≤ F

(
k̄,

∫ 1

0
rc(t)dt

)
≤ F

(
k̄,m0

)
.

Then we get:

kc(1)− k0 =

∫ 1

0
k̇c(t)dt ≤

∫ 1

0
F (k̄, rc(t))dt− c ≤ F

(
k̄,m0

)
− c .

Since kc(1) > k0, it follows that c < F (k̄,m0).

Lemma 7 If C(k0,m0) is non-empty, then supC(k0,m0) ∈ D(k0).

Proof. Let c̄ := supC(k0,m0). Suppose on the contrary that limr→∞ F (k0, r) ≤
c̄. We consider two cases separately: (i) limr→∞ F (k0, r) < c̄; limr→∞ F (k0, r) = c̄.

In case (i), it follows from Proposition 2 that there is a path (cc(t), kc(t), rc(t))

from (k0,m0) satisfying cc(t) = c and (HaR) for all t ≥ 0, for which limr→∞ F (k0, r)

< c < c̄. Since k̇c(0) = F (k0, r
c(0))− c > 0, we obtain the following contradiction:

c < F (k0, r
c(0)) ≤ lim

r→∞
F (k0, r) < c .
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In case (ii), we have F (k0, r) < c̄ for all r ≥ 0, which implies:

F
(
k0,

c̄+k0
k0

m0

)
< c̄ .

Consequently, there is θ > 1 such that

c := F
(
θk0,

c̄+k0
k0

m0

)
< c̄ . (30)

It follows from Proposition 2 that there is a path (cc(t), kc(t), rc(t)) from (k0,m0)

satisfying cc(t) = c and (HaR) for all t ≥ 0, with c < c < c̄ and c̄− c < (θ − 1)k0.

Since kc(0) = k0 < θk0 and k̇c(t) > 0 for all t ∈ [0,∞), by Lemma 5 there is a

unique T > 0 such that kc(T ) = θk0. For every t ∈ [0, T ], kc(t) ≤ θk0, so that:

0 < k̇c(t) = F (kc(t), rc(t))− c ≤ F (θk0, r
c(t))− c . (31)

This implies that F (θk0, r
c(t)) > c > c, and using (30) we obtain:

rc(t) > c̄+k0
k0

m0 for all t ∈ [0, T ] . (32)

Also, recalling c̄− c < (θ − 1)k0, we obtain that, for every t ∈ [0, T ],

F (θk0, r
c(t))− c ≤ θF (k0, r

c(t))− c ≤ θc̄− c

= (θ − 1)c̄+ (c̄− c) < (θ − 1)c̄+ (θ − 1)k0 = (θ − 1)(c̄+ k0) .

By combining this inequality with (31) we obtain

(θ − 1)k0 = kc(T )− kc(0) =

∫ T

0
k̇c(t)dt < (θ − 1)(c̄+ k0)T ,

which yields T > k0/(c̄+ k0) and, by (32),∫ T

0
rc(t)dt > T c̄+k0

k0
m0 >

k0
c̄+k0

c̄+k0
k0

m0 = m0 .

This contradicts that (cc(t), kc(t), rc(t)) is a path from (k0,m0).

The following lemma implies that the least upper bound c̄ for consumption levels

that can be sustained from (k0,m0) can be implemented by a Hartwick path from

(k0,m0) given c̄. This completes the proof of Proposition 1.

Lemma 8 Assume that C(k0,m0) is non-empty, and let c̄ := supC(k0,m0). Then:∫ ∞
k0

1

F2(x, r(c̄, x))
dx ≤ m0 . (33)
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Proof. By Lemma 7, (k0, c̄) ∈ D. By Lemma 1, there are k′ < k0 and c′ >

c̄ such that (0, c′) × (k′,∞) ∈ D, and r(c, k) and g(c, k) ≡ 1/F2(k, r(c, k)) are

continuously differentiable functions on (0, c′) × (k′,∞). We claim that, for every

k1 > k0,
∫ k1
k0
g(c̄, x)dx ≤ m0. Note that since g(c̄, k) is continuous on (k′,∞), the

Riemann integral on the left-hand side is well-defined for every k1 > k0.

Suppose, contrary to our claim, that there is k1 > k0 such that
∫ k1
k0
g(c̄, x)dx >

m0. Since g is continuous on (0, c′) × (k′,∞), J(c) ≡
∫ k1
k0
g(c, x)dx is continu-

ous on the interval [c̄/2, c̄] (see Apostol, 1974, p. 166). In particular, there is

c ∈ int(C(k0,m0)) such that J(c) > m0. However, by Proposition 2, if c ∈
int(C(k0,m0)), then (20) holds, leading to a contradiction.

Proof of Proposition 1. It follows from Lemma 8 and the proof of Theorem

1 that there is a path (c∗(t), k∗(t), r∗(t)) from (k0,m0), where k∗ from [0,∞) to

(k0 − ε,∞) is a solution to the differential equation

ẋ(t) = F (x(t), r(c̄, x(t)))− c̄ for t ∈ [0,∞)

satisfying k∗(0) = k0, and where c∗(t) = c̄ and r∗(t) = r(c̄, k∗(t)) for t ∈ [0,∞). The

path is egalitarian by construction, maximin by definition of c̄, and satisfies (HaR)

for all t ≥ 0 by Lemma 1.

8 Proving the maximin efficiency theorem

To discuss the issue of efficiency we first introduce some additional definitions. A

path (c(t), k(t), r(t)) from (k0,m0) is efficient if there is no path (c′(t), k′(t), r′(t))

from (k0,m0) with c′(t) ≥ c(t) for all t ≥ 0 and c′(τ) > c(τ) for some τ ≥ 0.8 A path

(c(t), k(t), r(t)) from (k0,m0) is resource exhausting if (3) is binding. An interior

path (c(t), k(t), r(t)) from (k0,m0) satisfies Hotelling’s no-arbitrage rule if r(t) is

not only continuous but also differentiable and

Ḟ2(k(t), r(t))

F2(k(t), r(t))
= F1(k(t), r(t)) for all t . (HoR)

An interior path (c(t), k(t), r(t)) from (k0,m0) satisfying (HoR) satisfies in addition

the capital value transversality condition if

lim
t→∞

1

F2(k(t), r(t))
k(t) = 0 . (CVT)

8Usually we employ the strict inequality for an interval of time, because in continuous time spikes

do not matter. Here, however, c(t) is continuous, so that we can use this more stringent definition.
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Hotelling’s rule is a condition for short-run efficiency, ensuring that for any T > 0

it is not feasible to increase consumption on some part of [0, T ] without decreasing

consumption on some other part of [0, T ], for fixed stocks (k(T ),m(T )) at time

T . The capital value transversality condition and resource exhaustion ensure that

stocks are not over-accumulated as time goes infinity.

If F satisfies A1–A3 and C(k0,m0) is non-empty, then by Propositions 1 and

2, for any c ∈ C(k0,m0), there is a Hartwick path (cc(t), kc(t), rc(t)) from (k0,m0)

satisfying cc(t) = c for all t ≥ 0. In particular, there is a maximin Hartwick path

(c∗(t), k∗(t), r∗(t)) from (k0,m0) satisfying c∗(t) = maxC(k0,m0) for all t ≥ 0.

Any Hartwick path (cc(t), kc(t), rc(t)) is interior and egalitarian, satisfies (HaR)

for all t ≥ 0, and has the property that cc(t), kc(t) and rc(t) are continuously

differentiable. Hence, by invoking Buchholz, Dasgupta and Mitra (2005, Proposition

3) it follows that it also satisfies (HoR) as a condition for short-run efficiency.

In this section we show that assumptions A1–A3 are sufficient for establish-

ing that any Hartwick path satisfies (CVT). However, while it is clear that any

Hartwick path that is not maximin does not satisfy resource exhaustion and is thus

inefficient, it is still an open question whether these assumptions imply that the

maximin Hartwick path exhausts the resource when time goes to infinity.

We establish that the maximin Hartwick path satisfies resource exhaustion and

is efficient under an additional assumption, referred to as A4. While imposing this

additional assumption is sufficient, we are not able show its necessity. In our analysis

of efficiency, we apply the concepts of competitive paths and regular maximin paths

(cf. Burmeister and Hammond, 1977; Dixit, Hammond and Hoel, 1980).

A path (c(t), k(t), r(t)) from (k0,m0) is competitive if there exist present-value

price functions p(·) : [0,∞) → R++ and (q1(·), q2(·)) : [0,∞) → R2, where p(t) is

continuous and (q1(t), q2(t)) are differentiable, such that, for all t ≥ 0,

(c(t), k(t),m(t), k̇(t), ṁ(t)), where k̇(t) = F (k(t), r(t))− c(t) and ṁ(t)) = −r(t),

maximizes instantaneous profits

p(t)c′ + q1(t)k̇′ + q2(t)ṁ′ + q̇1(t)k′ + q̇2(t)m′

over all quintuples (c′, k′,m′, k̇′, ṁ′) in the production possibility set Y defined by:

Y := {(c, k,m, k̇, ṁ) ∈ R3
+ × R× (−R+) : c+ k̇ ≤ F (k, (−ṁ))} .
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Proposition 3 Assume that F satisfies A1–A3 and that C(k0,m0) is non-empty

with c ∈ C(k0,m0). Then the Hartwick path (cc(t), kc(t), rc(t)) from (k0,m0) with

cc(t) = c for all t ≥ 0 is competitive.

Proof. Since F is twice continuously differentiable and kc(t) and rc(t) are dif-

ferentiable, we may define

p(t) = q1(t) =
1

F2(kc(t), rc(t))
(P)

q2(t) = 1 (Q)

for all t ≥ 0. Note that, for each t ≥ 0, (cc(t), kc(t),mc(t), k̇c(t), ṁc(t)) ∈ Y .

Furthermore, for all (c′, k′,m′, k̇′, ṁ′) ∈ Y , we have by A2 and A3:

(c′ + k̇′)− (cc(t) + k̇c(t)) ≤ F (k′,−ṁ′)− F (kc(t),−ṁc(t))

≤ F1(kc(t), rc(t))
(
k′ − kc(t)

)
+ F2(kc(t), rc(t))

(
−ṁ′ + ṁc(t)

)
.

(34)

Multiplying through (34) by p(t) > 0, and using (HoR), (P) and (Q), yields:

p(t)
(
c′ − cc(t)

)
+q1(t)

(
k̇′−k̇c(t)

)
≤ −q̇1(t)

(
k′ − kc(t)

)
+q2(t)

(
−ṁ′ + ṁc(t)

)
. (35)

Transposing terms in (35) and noting that q̇2(t) = 0 for t ≥ 0, we obtain

p(t)cc(t) + q1(t)k̇c(t) + q2(t)ṁc(t) + q̇1(t)kc(t) + q̇2(t)mc(t)

≥ p(t)c′ + q1(t)k̇′ + q2(t)ṁ′ + q̇1(t)k′ + q̇2(t)m′

for all (c′, k′,m′, k̇′, ṁ′) ∈ Y and all t ≥ 0.

Note that only Hotelling’s rule is used in this proof. Since, as is easily shown,

a competitive path is short-run efficient, it proves the claim that Hotelling’s rule is

sufficient for short-run efficiency.

To the best of our knowledge the existing literature does not provide a formal

proof that the Hartwick path (cc(t), kc(t), rc(t)) from (k0,m0) with cc(t) = c ∈
C(k0,m0) for all t ≥ 0 satisfies the capital value transversality condition. To settle

that this is indeed the case, we present here a self-contained treatment, which uses

only the maintained assumptions A1–A3, and the non-emptiness of C(k0,m0). No

additional assumptions are needed.

Proposition 4 Assume that F satisfies A1–A3 and that C(k0,m0) is non-empty

with c ∈ C(k0,m0). Then the Hartwick path (cc(t), kc(t), rc(t)) from (k0,m0) with

cc(t) = c for all t ≥ 0 satisfies the capital value transversality condition.
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Proof. Note that mc(t) is decreasing in t (since rc(t) > 0 for all t ≥ 0), and

bounded below by zero, so it converges to a limit mc
∞ := limt→∞m

c(t) ≥ 0. Note

that resource exhaustion is not being assumed.

Using (HoR), we know that Ḟ2(kc(t), rc(t)) > 0 for all t ≥ 0, and so F2(kc(t), rc(t))

is increasing for t ≥ 0. If F2(kc(t), rc(t)) were to be bounded above, then there would

be a number B > 0, such that F2(kc(t), rc(t)) ≤ B for all t ≥ 0. In this case, we

would have:

k̇c(t) = F2(kc(t), rc(t))rc(t) ≤ Brc(t) for all t ≥ 0 .

However, then by integrating from t = 0 to t = T > 0, we would get:

kc(T )− kc(0) ≤ B
∫ T

0
rc(t)dt ≤ Bm0

so that kc(t) would be bounded above by k0 + Bm0 for all t ≥ 0. This would

contradict Lemma 5. Thus, F2(kc(t), rc(t)) cannot be bounded above and we have:

F2(kc(t), rc(t))→∞ as t→∞ .

Using (P),

p(t)→ 0 as t→∞ , (36)

and (CVT) is equivalent to

p(t)kc(t)→ 0 as t→∞ . (37)

Let ε > 0 be given. By definition of mc
∞, there is T1 > 0 such that:

|mc(t)−mc
∞| < ε/3 for all t > T1 . (38)

Furthermore, because of (36) there is T2 > T1 such that:

p(t)kc(T1) < (ε/3) for all t > T2 . (39)

Fix any T ′ > T2. Then, since k̇c(t) > 0 for all t ≥ 0, and p(t) is positive and

decreasing in t, we can use (HaR) to write:∫ T ′

T1

rc(t)dt =

∫ T ′

T1

p(t)k̇c(t)dt ≥
∫ T ′

T1

p(T ′)k̇c(t)dt

= p(T ′)

∫ T ′

T1

k̇c(t)dt = p(T ′)[kc(T ′)− kc(T1)]

(40)
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On the other hand, by using (38),∫ T ′

T1

rc(t)dt = mc(T1)−mc(T ′) = (mc(T1)−mc
∞)− (mc(T ′)−mc

∞)

≤ |mc(T1)−mc
∞|+ |mc(T ′)−mc

∞| < 2ε/3 .

(41)

Combining (40) and (41),

p(t)[kc(t)− kc(T1)] < 2ε/3 for all t > T2 .

This yields:

p(t)kc(t) < p(t)kc(T1) + (2ε/3) for all t > T2 . (42)

Thus, combining (39) and (42), we obtain:

p(t)kc(t) < ε for all t > T2 .

This establishes (37) and thereby (CVT).

Propositions 3 and 4 imply that, if C(k0,m0) is non-empty, then the Hartwick

path from (k0,m0) given c ∈ C(k0,m0) solves the minimum resource use problem of

minimizing the total resource depletion while sustaining c(t) ≥ c indefinitely.

A competitive path (c(t), k(t), r(t)) from (k0,m0) at present-value prices p(t) and

(q1(t), q2(t)) is a regular maximin path if it9

(i) is egalitarian,

(ii) satisfies the capital value transversality condition and resource exhaustion,

(iii) has finite consumption value: ∫ ∞
0

p(t) <∞ . (FCV)

In view of Propositions 3 and 4, if C(k0,m0) is non-empty, the maximin Hartwick

path (c∗(t), k∗(t), r∗(t)) from (k0,m0) satisfying c∗(t) = maxC(k0,m0) for all t ≥ 0

is regular if it satisfies resource exhaustion and has finite consumption value.

As a step towards establishing that the maximin Hartwick path is regular, we first

show that any Hartwick path satisfies (FCV) given that the following assumption—

entailing that resource input is important (Mitra, 1978a, p. 121)—is added.

9Dixit, Hammond and Hoel (1980, p. 553) define a regular maximin path through their conditions

(a)–(c). In the context of our one-consumption good model, (i) and (iii) correspond to their condi-

tions (a) and (b), while (ii) is equivalent to their condition (c), given that q2(t) = 1 for all t ≥ 0.
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Assumption 4 (A4) β := inf(k,r)�0 F2(k, r)r/F (k, r) > 0.

In the Cobb-Douglas case, where the production function is given by (4), β = b.

Lemma 9 Assume that F satisfies A1–A4 and that C(k0,m0) is non-empty with

c ∈ C(k0,m0). Then the Hartwick path (cc(t), kc(t), rc(t)) from (k0,m0) with cc(t) =

c for all t ≥ 0 satisfies ∫ ∞
0

1

F2(kc(t), rc(t))
dt <∞ . (43)

Proof. By invoking A4, for all T > 0 we have:∫ T

0

1

F2(kc(t), rc(t))
dt =

∫ T

0

rc(t)

F2(kc(t), rc(t))rc(t)
dt ≤

∫ T

0

1

βF (kc(t), rc(t))
rc(t)dt

<

∫ T

0

1

βc
rc(t)dt =

1

βc

∫ T

0
rc(t)dt ≤ m0

βc
.

since k̇c(t) = F (kc(t), rc(t)) − c > 0, so that F (kc(t), rc(t)) > c, for all t ≥ 0. The

integral is increasing in T and bounded above by (m0/βc), so it converges as T →∞.

Thus (43) follows.

Observe that ∫ ∞
0

1

F2(kc(t), rc(t))
dt

is the marginal resource cost of a uniform increment to consumption, given the initial

capital stock k0. Therefore, it follows from Lemma 9 that under A1–A4 any unused

resource can be translated into a uniform addition to consumption provided that

there it is feasible to sustain a path from (k0,m0) with consumption bounded away

from zero. Hence, the maximin Hartwick path satisfies resource exhaustion, and is

thus regular. The following theorem turns this intuition into a formal argument.

Theorem 4 Assume that F satisfies A1–A4 and that C(k0,m0) is non-empty.

Then the maximin Hartwick path (c∗(t), k∗(t), r∗(t)) from (k0,m0) satisfying c∗(t) =

maxC(k0,m0) for all t ≥ 0 is regular.

Proof. By Propositions 3 and 4 and Lemma 9, it remains to be shown that

m∗(t)→ 0 as t→∞ . (44)

Suppose (44) did not hold. Then:

m∗(t)→ m∗∞ > 0 as t→∞ .
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Denote [m0/(m0 −m∗∞)] by θ. Then θ > 1. Define:

(c(t), k(t), r(t)) = (F (k∗(t), θr∗(t))− k̇∗(t), k∗(t), θr∗(t)) for all t ≥ 0 .

Note that r(t) > 0 for t ≥ 0, r(t) is continuous on [0,∞), and∫ ∞
0

r(t)dt = θ

∫ ∞
0

rc(t)dt = θ(m0 −m∗∞) = m0 .

Also, k(t) = k∗(t) is continuously differentiable on [0,∞), so c(t) = F (k(t), r(t)) −
k̇(t) is continuous on [0,∞). Finally, for t ≥ 0, we have:

c(t) = F (k(t), r(t))− k̇(t) = F (k∗(t), θr∗(t))− k̇∗(t)

= F (k∗(t), θr∗(t))− F (k∗(t), r∗(t)) + F (k∗(t), r∗(t))− k̇∗(t)

= F (k∗(t), θr∗(t))− F (k∗(t), r∗(t)) + c ≥ F2(k∗(t), θr∗(t))(θ − 1)r∗(t) + c

= [(θ − 1)/θ]F2(k∗(t), θr∗(t))θr∗(t) + c ≥ [(θ − 1)/θ]βF (k∗(t), θr∗(t)) + c

≥ [(θ − 1)/θ]βF (k∗(t), r∗(t)) + c ≥ [(θ − 1)/θ]βc+ c .

This shows that (c(t), k(t), r(t)) is a path from (k0,m0), and

c(t) ≥ c{1 + [(θ − 1)/θ]β} > c .

But, then, (k∗(t), r∗(t), c∗(t)) is not a maximin path from (k0,m0), a contradiction,

Thus, (44) must hold, and (k∗(t), r∗(t), c∗(t)) is a regular maximin path.

9 Concluding remarks

We have provided a complete technological characterization of the sustainability

problem and established general existence of a maximin optimal path in the Das-

gupta-Heal-Solow-Stiglitz model of capital accumulation and resource depletion un-

der weaker conditions that those employed in previous work. Though our method

of proof, we have also offered new insights into the meaning and significance of

Hartwick’s reinvestment rule.

Unfortunately, our constructive approach may not extend to different criteria

and environments and thus the prospects for wider applicability of our strategy of

proof might be limited.

(a) With another objective function than maximin it is not necessarily the case

that the ratio of capital accumulation to resource depletion is maximized. E.g.
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under classical utilitarianism, capital is accumulated faster than this, to meet

the demands of higher consumption in the future (see Dasgupta and Heal,

1979; Asheim, Buchholz, Hartwick, Mitra and Withagen, 2007).

(b) In the DHSS model with two capital goods, one obtains Buchholz, Dasgupta

and Mitra’s (2005, Proposition 3) result that constant consumption and Hart-

wick’s rule implies Hotelling’s rule as a condition for short-run efficiency. As

mentioned above, this property is utilized in this paper, since short-run ef-

ficiency follows from constant consumption and maximization of the ratio of

capital accumulation to resource depletion. In models with more than two

capital goods, conditions for short-run efficiency must be invoked directly.

(c) The strategy of proof with its phase diagram argument relies on a stationary

environment where the future development of the optimal path depends on the

vector of stocks only. It would not directly extend to models with technological

progress or population growth.

A Appendix: An example without maximin existence

Consider the case where F is given by (10) and (k0,m0) = (1, 1).

Sustainability. We first claim that C(k0,m0) is non-empty. To establish this, simply

define:

k(t) = 1, r(t) = 0, c(t) = 1 for all t ≥ 0 ,

and note that k̇(t) = 0 for t ≥ 0. Thus, (c(t), k(t), r(t)) is a path from (k0,m0) = (1, 1), and

c(t) = 1 > 0 for all t ≥ 0. This establishes our claim.

An upper bound on sustainable consumption. We now claim that that there is

no path (c(t), k(t), r(t)) satisfying:

c(t) ≥ 2 for all t ≥ 0 . (A1)

Suppose, there were such a path. We then establish the following steps.

Step 1: We must have k(t) < 2 for all t ≥ 0. For if k(t) ≥ 2 for some t ≥ 0, then we

can define T = inf{t ≥ 0 : k(t) ≥ 2}. By continuity of k(t), we must have k(T ) = 2. Since

k(0) = 1, we know that T > 0. Furthermore,

k(t) < 2 for all t ∈ [0, T ) . (A2)
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Denote (2− k(t)) by α(t) for all t ∈ [0, T ], and let σ :=
∫ T/2
0

α(t)dt. Then, by (A2), σ > 0,

and using the fact that for all t ∈ [0, T ),

k̇(t) = k(t) + r(t)− c(t) ≤ k(t) + r(t)− 2 = r(t)− α(t) ,

we obtain for all τ ∈ [T/2, T ),

k(τ)− k(0) =

∫ τ

0

k̇(t)dt =

∫ τ

0

r(t)dt−
∫ τ

0

α(t)dt ≤
∫ τ

0

r(t)dt−
∫ T/2

0

α(t)dt ≤ m(0)− σ = 1− σ.

Thus, for all τ ∈ [T/2, T ), we get k(τ) ≤ k(0) + (1− σ) = (2− σ). So by continuity of k(t),

we obtain k(T ) ≤ 2−σ, and this contradicts the fact that k(T ) = 2. This completes Step 1.

Define α(t) = 2−k(t) for all t ≥ 0. Then, α(t) > 0 for all t ≥ 0 by Step 1, and therefore:

β :=

∫ 1

0

α(t)dt > 0 .

Step 2: We must have k(t) ≤ 2− β for all t ≥ 1. To see this, note that for all t ≥ 0,

k̇(t) = k(t) + r(t)− c(t) ≤ k(t) + r(t)− 2 = r(t)− α(t) .

so that for all T ≥ 1,

k(T )− k(0) =

∫ T

0

k̇(t)dt =

∫ T

0

r(t)dt−
∫ T

0

α(t)dt ≤
∫ T

0

r(t)dt−
∫ 1

0

α(t)dt ≤ m(0)− β = 1− β,

and consequently, k(T ) ≤ k(0) + (1− β) = 2− β for all T ≥ 1. This completes Step 2.

Step 3: k(t) < 0 for all t > (2 + β)/β. For all t ≥ 0, we have k̇(t) = k(t) + r(t) − c(t),
and we can write for all T > 1,

k(T )− k(0) =

∫ T

0

k̇(t)dt =

∫ T

0

k(t)dt+

∫ T

0

r(t)dt−
∫ T

0

c(t)dt

≤
∫ 1

0

k(t)dt+

∫ T

1

k(t)dt+

∫ T

0

r(t)dt− 2T

< 2 + (2− β)(T − 1) + 1− 2T = 1− β(T − 1) ,

(A3)

the third line of (A3) following from Steps 1 and 2. Thus, k(T ) ≤ k(0) + 1 − β(T − 1) =

2− β(T − 1) for all T > 1. For T > (2 + β)/β, we have (T − 1) > 2/β, and so β(T − 1) > 2.

Thus, for T > (2 + β)/β, k(T ) ≤ 2− β(T − 1) < 0 and this establishes Step 3.

By Step 3, the hypothesis that there is a path (c(t), k(t), r(t)) satisfying (A1) must be

false, and this establishes our claim.

We have now demonstrated that an upper bound of C(k0,m0) is 2. We will show in the

next section that this is also its least upper bound.

The supremum of C(k0,m0). We now show that, given any ε ∈ (0, 1), there is a path

(c(t), k(t), r(t)) satisfying:

c(t) ≥ 2− ε for all t ≥ 0 .
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Given the ε, define:

n = (1/ε) and T = 2/(n+ 1)3 , (A4)

and determine the path of resource depletion by:

r(t) =


2

T
− 2t

T 2
for t ∈ [0, T ] ,

0 for t > T .

Then, r(t) ≥ 0 for t ∈ [0, T ], with r(T ) = 0, and r(t)→ 0 as t→ T. Thus r(t) is continuous

for t ≥ 0. Furthermore,∫ ∞
0

r(t)dt =

∫ T

0

r(t)dt =

∫ T

0

{
2

T
− 2t

T 2

}
dt = 2− 2

T 2

[
t2

2

]T
0

= 2− 1 = 1 = m0 .

Denote (1− ε2) by λ, and determine the capital path by:

k(t) =

 1 + λ

[
2t

T
− t2

T 2

]
for t ∈ [0, T ] ,

1 + λ for t > T .

(A5)

Note that k(0) = 1 = k0 and k(t) ≥ 1 for all t ≥ 0. Furthermore,

k̇(t) = λ

[
2

T
− 2t

T 2

]
= λr(t) ≥ 0 for t ∈ [0, T )

with k̇(T−) = 0 = k̇(T+). Thus, k(t) is a C1 function on R+, and k̇(t) = λr(t) for all t ≥ 0.

If we now determine the consumption path by:

c(t) = (1− λ)r(t) + k(t) for all t ≥ 0 , (A6)

then clearly c(t) ≥ 0 for t ≥ 0, and c(t) = F (k(t), r(t)) − λr(t) = F (k(t), r(t)) − k̇(t) for

t ≥ 0. So {c(t), k(t), r(t)} is a path from (k0,m0).

It remains to show that c(t) ≥ 2 − ε for all t ≥ 0. For t > T , we have r(t) = 0 and

k(t) = 1 + λ, so by (A5) and (A6),

c(t) = k(t) = 1 + λ = 2− ε2 > 2− ε for t > T . (A7)

So, we now concentrate on t ∈ [0, T ].

Define N = nT/(n+ 1) Then,

k(N) = 1 + λ

[
2N

T
− N2

T 2

]
= 1 + λ

[
2n

(n+ 1)
− n2

(n+ 1)2

]
= 1 +

λn

(n+ 1)

[
2− n

(n+ 1)

]
= 1 +

λn

(n+ 1)

(n+ 2)

(n+ 1)
= 1 + λ

[
1− 1

(n+ 1)2

]
.

(A8)

Now, by choice of n in (A4), we have:

(n+ 1)2 ≥ (n+ 1) =
1

ε
+ 1 =

1 + ε

ε
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and so:
1

(n+ 1)2
≤ ε

1 + ε
.

Thus, [
1− 1

(n+ 1)2

]
≥
[
1− ε

1 + ε

]
=

1

1 + ε
. (A9)

Using (A9) in (A8), we get:

k(N) ≥ 1 +
λ

1 + ε
= 1 +

1− ε2

1 + ε
= 2− ε .

Since k̇(t) ≥ 0 for all t ≥ 0, we have k(t) ≥ 2− ε for all t ∈ [N,T ] Consequently, using (A6),

c(t) = (1− λ)r(t) + k(t) ≥ k(t) ≥ 2− ε for all t ∈ [N,T ] . (A10)

Finally, we turn to t ∈ [0, N). Here, we have by (A6),

c(t) = (1− λ)r(t) + k(t) ≥ (1− λ)r(t) + 1 = ε2r(t) + 1 = ε2
[

2

T
− 2t

T 2

]
+ 1

≥ ε2
[

2

T
− 2N

T 2

]
+ 1 = ε2

[
2

T
− 2nT

(n+ 1)T 2

]
+ 1

=
2ε2

T

[
1− n

(n+ 1)

]
+ 1 =

2ε2

(n+ 1)T
+ 1 = ε2(n+ 1)2 + 1 > ε2n2 + 1 = 2 ,

(A11)

the second line of (A11) following from the definition of N , and the last line of (A11)

following from the definitions of T and n in (A4).

Combining (A7), (A10) and (A11), we have c(t) ≥ 2− ε for all t ≥ 0, and so:

inf
t≥0

c(t) ≥ 2− ε .

Combining the result of this part with the previous one, we conclude that the supremum

of C(k0,m0) is equal to 2. However, as shown in the previous part, there is no path in

C(k0,m0) which attains this supremum. Thus, there is no maximin path in this model.

It is of interest to note that in discussing basically the same example of the production

function, Dasgupta and Heal (1974, p. 18) claim that there exists an optimal path in this

case. In fact they make the claim that the Dirac delta function is the optimal strategy for

optimal depletion of the resource. However, given that the integral of resource depletion

needs to be well-defined, at least as a Lebesgue integral, it follows that we cannot admit the

Dirac delta-function as a feasible path of resource depletion.
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